BIO 16 Course Outline as of Summer 2021

CATALOG INFORMATION

Dept and Nbr: BIO 16 Title: NON MAJOR BIOLOGY

Full Title: Introduction to Biology For Non-Majors

Last Reviewed: 10/23/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	8	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 210.00

Title 5 Category: AA Degree Applicable

Grading: **Grade Only**

00 - Two Repeats if Grade was D, F, NC, or NP Repeatability:

Also Listed As:

Formerly:

Catalog Description:

An introduction for non-majors to the core concepts of biology by studying current issues in modern biology with an emphasis on the scientific method and scientific literacy.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: An introduction for non-majors to the core concepts of biology by studying current issues in modern biology with an emphasis on the scientific method and scientific literacy.

(Grade Only)

Prerequisites/Corequisites:
Recommended: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment: Transfer Credit: CSU;UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

C Natural Sciences Fall 2014

CSU GE: Transfer Area Effective: Inactive:

B2 Life Science Fall 2014

B3 Laboratory Activity

IGETC: Transfer Area Effective: Inactive:

5B Biological Sciences Fall 2014

5C Fulfills Lab Requirement

CSU Transfer: Transferable Effective: Fall 2014 Inactive:

UC Transfer: Transferable Effective: Fall 2014 Inactive:

CID:

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Apply the scientific method to investigating and evaluating biological phenomena.
- 2. Explain the application of the core concepts of biology to current issues.
- 3. Evaluate the scientific background of and debate on current biological issues.
- 4. Demonstrate knowledge of laboratory and field biology techniques, including microscopy.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Explain the scientific method and assess information about current scientific issues using this methodology
- 2. Compare and contrast science and pseudoscience
- 3. Assess the role of science in society
- 4. Demonstrate knowledge of each of the following core concepts: evolution, structure and function, flow of information, flow of matter, systems biology
- 5. Apply core concepts to specific current issues in modern biology
- 6. Analyze and critically evaluate a current issue in biology and current events using the principles of the scientific method
- 7. Apply the steps in the scientific method for problem solving and biological investigation
- 8. Apply laboratory techniques, including proper microscope use, to observing and experimenting with biological phenomena

Topics and Scope:

- I. Science and the Scientific Method
 - A. Science and the scientific process
 - B. Science versus pseudoscience

- C. Science's role in and influence on society
- D. Assessment of the quality of scientific research
- E. The scientific method
 - 1. experimental design
 - 2. hypothesis testing
 - 3. science writing
- II. Core Concepts of Biology
 - A. Evolution
 - 1. natural selection
 - 2. speciation
 - B. Structure and function
 - 1. relationship of anatomy and physiology
 - 2. role of natural selection
 - 3. examples in cell biology, organismal biology, evolutionary biology
 - C. Flow of information
 - 1. molecular genetics
 - 2. Mendelian genetics
 - D. Flow of energy and matter
 - 1. metabolism
 - 2. physiology
 - 3. biogeochemical cycles
 - 4. energy movement in ecosystems
 - E. Systems Biology: levels of biological organization
 - F. Applications of core concepts to current issues in biology
- III. Laboratory Exercises
 - A. Compound and dissecting microscope use
 - B. Scientific method
 - C. Experimental design
 - D. Hypothesis testing
 - E. Enzyme structure and function
 - F. Properties of water
 - G. Molecular genetics
 - H. Mendelian genetics
 - I. Eukaryotic biodiversity

Assignment:

Lecture-Related Assignments:

- 1. Assigned reading from text and instructor prepared material (10-30 pages/week)
- 2. Response papers (2-4) analyzing current issues in the context of the biological knowledge gained in the course (2-4 pages each)
- 3. Oral report on biological topics and their relationship to current events
- 4. Quizzes (5-10) on lecture and reading material

Lecture- and Lab-Related Assignments:

1. Written lecture exams (3-4) and lab exams (1-2) covering biological content and applications to current issues in biology

Lab-Related Assignments:

1. Participation in class exercises, analysis of case studies, and discussions relating to specific current biological topics and their relationship to current events

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Response papers

Writing 10 - 30%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Analysis of case studies

Problem solving 5 - 10%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Lecture exams: Multiple choice, Matching items, Completion, Short answer, Essay; Quizzes; Laboratory Exams Exams 40 - 60%

Other: Includes any assessment tools that do not logically fit into the above categories.

Oral report, attendance and participation

Other Category 15 - 25%

Representative Textbooks and Materials:

Campbell Essential Biology with Physiology. 5th Ed. Simon, Eric and Dickey, Jean and Reece, Jane. Pearson. 2015

ebook: Principles of Biology. Nature Publishing Group. 2012 (classic) Instructor prepared materials