GIS 52 Course Outline as of Fall 2021

CATALOG INFORMATION

Dept and Nbr: GIS 52 Title: ADVANCED GIS Full Title: Advanced Geographic Information Systems (GIS)

Last Reviewed: 10/10/2016

Units		Course Hours per Wee	ek N	br of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	8	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

This is an advanced project-based course where the student will apply fundamental and intermediate concepts in Geographic Information Systems (GIS) to a specific project utilizing GIS technology and industry standard software. Students should come prepared with a project topic, scope, goals and objectives, and data sources. An oral presentation of the project will be made at the completion of the course.

Prerequisites/Corequisites:

Course Completion of GIS 51 and GIS 54

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: This is an advanced project-based course where the student will apply fundamental and intermediate concepts in Geographic Information Systems (GIS) to a specific project utilizing GIS technology and industry standard software. Students should come prepared with a project topic, scope, goals and objectives, and data sources. An oral presentation of the project

will be made at the completion of the course. (Grade Only)

Prerequisites/Corequisites: Course Completion of GIS 51 and GIS 54

Recommended:

Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Effective: Inactive: Area CSU GE: **Transfer Area** Effective: Inactive:

Transfer Area IGETC: Effective: **Inactive:**

CSU Transfer: Effective: **Inactive:**

UC Transfer: Inactive: Effective:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Demonstrate advanced skills in Geographic Information Systems (GIS) analysis
- 2. Prepare layouts, reports, charts and graphs to support the GIS project presentation
- 3. Prepare and present a professional level GIS project

Objectives:

Upon completion of this course, the student will be able to:

- 1. Research and acquire GIS data
- 2. Edit, query and analyze geographic and tabular data
- 3. Perform advanced spatial analysis using GIS technology
- 4. Customize software for spatial analysis queries
- 5. Create project layouts and query information using GIS techniques
- 6. Prepare and present a professional level GIS project with supporting data

Topics and Scope:

- I. Introduction to research methods
 - A. Development of a research question
 - B. Literature review
 - C. Stages of a project
 - D. Scientific writing format
 - E. Publishing results
- F. Professional liability and ethics II. Data development
- - A. Data collection for research

- B. Basic descriptive vs. inferential statistical methods
- C. Analysis plan
- D. Geographic data collection
- E. Data editing and reduction cycles
- F. Data summarization
- G. Data flow
- III. Model selection
 - A. Analysis type
 - B. Data compatibility
 - C. Pilot study
 - D. Final model(s)
 - E. Validity check
- IV. Project summarization
 - A. Charts, tables, graphs, diagrams
 - B. Data compatibility
 - C. Slides as an outline
 - D. Map as a document
- V. Project publication/documentation
 - A. Citing references
 - B. Documenting data sources
 - C. Listing errors and disclaimers
 - D. Ensuring data integrity
 - E. Meeting legal requirements
- VI. Formal presentation
 - A. Know your audience, data and design
 - B. Content, relevance, format, timing, forum

Laboratory Topics and Scopes

- I. ESRI Virtual Campus -- Two to three relevant topical mini courses that include readings, summary and online exam submitted at the end of each mini-course.
 - A. Performing spatial interpolation
 - B. Creating prediction surfaces
- II. Majority of remaining laboratory time is spent in providing one on one student interaction in the areas of project assistance and software support.

Assignment:

- 1. Textbook reading (10-30 pages per week)
- 2. Research reports (2-4) including data acquisition, editing and analyzing data from outside sources using the internet and Global Positioning Systems (GPS)
- 3. Lab assignments (2-3)
- 4. Project map(s) (1-3)
- 5. Oral project presentations: progress and final

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Research reports

Writing 20 - 30%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

ESRI mini courses and lab assignments

Problem solving 10 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Demonstration of GIS related technology and its use, presentation of project progress

Skill Demonstrations 20 - 30%

Exams: All forms of formal testing, other than skill performance exams.

Oral presentation of final research project and map(s)

Exams 20 - 50%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

GIS Fundamentals, A First Text on Geographic Information Systems (5th). Bolstad, Paul. Eider Press: 2016

Lining Up Data in ArcGIS: A Guide to Map Projections (2nd). Maher, Margaret. ESRI Press: 2013

Modeling Our World: the ESRI Guide to Geodatabase Concepts (2nd). Zeiler, Michael. ESRI Press: 2010 (classic)

An Introduction to Scientific Research Methods in Geography (2nd). Montello, D. Sage

Publications Inc.: 2012

Selected Articles and Scholarly Publications