APTECH 57 Course Outline as of Fall 2021

CATALOG INFORMATION

Dept and Nbr: APTECH 57 Title: ADVANCED AUTOCAD Full Title: Advanced AutoCAD Last Reviewed: 1/25/2021

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Computer-aided drafting using the AutoCAD software program. Areas covered include: advanced layout, construction and editing techniques, advanced dimensioning practices, threedimensional (3D) modeling and rendering, software customization, project-oriented architectural, civil and mechanical engineering applications, and an introduction to computer animation with 3ds Max.

Prerequisites/Corequisites:

Course Completion of APTECH 46

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Computer-aided drafting using the AutoCAD software program. Areas covered include: advanced layout, construction and editing techniques, advanced dimensioning practices, three-dimensional (3D) modeling and rendering, software customization, project-oriented architectural, civil and mechanical engineering applications, and an introduction to computer

animation with 3ds Max. (Grade Only) Prerequisites/Corequisites: Course Completion of APTECH 46 Recommended: Limits on Enrollment: Transfer Credit: CSU; Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	I		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	l		Effective:	Inactive:
CSU Transfer	:Transferable	Effective:	Spring 1991	Inactive:	
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Produce architectural and engineering CAD-generated drawings.
- 2. Utilize AutoCAD to create three-dimensional architectural and engineering models.

3. Produce finished drawings on titled sheets including advanced dimensioning, annotations, bill-of-materials, and drawing legends.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Set up and utilize the AutoCAD software program within various architecture, engineering, and construction industry situations.
- 2. Identify and use proper construction and editing techniques necessary for effective industry related layout work.
- 3. Demonstrate proficiency setting up dimensioning parameters for various architecture, engineering, and construction industry situations.
- 4. Construct wire-frame, surface, mesh, and solid 3D models within the AutoCAD software program.
- 5. Produce computer renderings from 3D CAD files.6. Create and utilize a personal AutoCAD profile that will result in more efficient use of the software.
- 7. Produce an architectural drafting/design project that includes:
 - a. Site plan
 - b. Floor plan
 - c. 3D model
 - d. Exterior elevations
- 8. Produce a mechanical engineering drafting design project that

includes:

- a. 3D parts files
- b. Assembly drawing
- c. Detailed parts drawings
- d. Stereo lithography files (STL) for 3D-printing use
- 9. Create a computer animation of a mechanical assembly

Topics and Scope:

- I. AutoCAD Software Setup for Various Industry Disciplines
 - A. Template files
 - B. System variables
 - C. Units
 - D. Layer conventions
 - E. Text styles
 - F. Dimension styles
 - G. Layouts
 - H. Single and multiple file strategies
- II. Construction and Editing in Layout Techniques
 - A. Orthographic projections
 - B. Geometric constructions
- III. Industry Standard Dimensioning
 - A. Dimension and extension lines
 - B. Symbols and arrows
 - C. Text
 - D. Fit
 - E. Primary units
 - F. Alternate units
 - G. Tolerances
- IV. Planar to Three-Dimensional Objects and Creation Techniques
 - A. Lines, splines, polylines
 - B. 3Dface
 - C. Region
 - D. Mesh Modeling
 - E. Solid primitives
 - F. Boolean operations: union, subtract, interfere, and intersect
 - G. Extrude
 - H. Revolve
 - I. Loft
 - J. Sweep
- V. Computer Renderings
 - A. Material assignment
 - B. Lighting
 - C. Environment
 - D. Still image generation and printing
- VI. Interface Configuration
 - A. Ribbon organization
 - B. Toolbars
 - C. Tool palettes
 - D. Keystrokes
 - E. Workspaces
- VII. Architectural Drafting/Design Drawings

- A. Site plan
- B. Floor plan
- C. 3D model
- D. Exterior elevations
- VIII. Mechanical Engineering Drafting/Design Drawings
 - A. 3D parts files
 - B. Assembly drawing
 - C. Detailed parts drawings
 - D. Stereo lithography files
- IX. Computer Animation of a Mechanical Assembly
 - A. Material assignment
 - B. Lighting
 - C. Camera animation
 - D. Rendering

The above Topics and Scope apply to both lecture and lab course components in an integrated format.

Assignment:

- 1. Reading (5 10 pages per week)
- 2. Weekly CAD exercises
- 3. Homework: Computer generated CAD drawings (12)
- 4. Quizzes (2 4)
- 5. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

CAD exercises and drawings

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Writing 0 - 0%	

Problem solving	
65 - 80%	

Skill Demonstrations 0 - 0%

Exams		
20 -	35%	

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

AutoCAD 2021: A Problem Solving Approach. 27th ed. Tickoo, Sham. CADCIM Technologies. 2020

AutoCAD and Its Applications: Comprehensive 2020. 27th ed. Shumaker, Terence, et al. Goodheart-Willcox. 2020

Instructor prepared materials