MATH 1A Course Outline as of Fall 2021

CATALOG INFORMATION

Dept and Nbr: MATH 1A Title: CALCULUS 1

Full Title: Calculus, First Course

Last Reviewed: 9/14/2020

Units		Course Hours per Week]	Nbr of Weeks	Course Hours Total	
Maximum	5.00	Lecture Scheduled	5.00	17.5	Lecture Scheduled	87.50
Minimum	5.00	Lab Scheduled	0	8	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 175.00 Total Student Learning Hours: 262.50

Title 5 Category: AA Degree Applicable

Grading: **Grade Only**

00 - Two Repeats if Grade was D, F, NC, or NP Repeatability:

Also Listed As:

Formerly:

Catalog Description:

Limits and continuity, differentiation, applications of the derivative, integration, applications of the integral.

Prerequisites/Corequisites:

Completion of MATH 27 or higher (MATH); OR Course Completion of MATH 25 and MATH 58; OR AB705 placement into Math Tier 4

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Limits and continuity, differentiation, applications of the derivative, integration, applications of the integral. (Grade Only)

Prerequisites/Corequisites: Completion of MATH 27 or higher (MATH); OR Course

Completion of MATH 25 and MATH 58; OR AB705 placement into Math Tier 4

Recommended:

Limits on Enrollment: Transfer Credit: CSU:UC.

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

B Communication and Analytical Fall 1981

Thinking

MC Math Competency

CSU GE: Transfer Area Effective: Inactive:

B4 Math/Quantitative Reasoning Fall 1981

IGETC: Transfer Area Effective: Inactive:

2A Mathematical Concepts & Fall 1981

Quantitative Reasoning

CSU Transfer: Transferable Effective: Fall 1981 Inactive:

UC Transfer: Transferable Effective: Fall 1981 Inactive:

CID:

CID Descriptor: MATH 900S Single Variable Calculus Sequence

SRJC Equivalent Course(s): MATH1A AND MATH1B

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. State and apply basic definitions, properties, and theorems of first semester calculus.
- 2. Calculate limits, derivatives, definite integrals, and indefinite integrals of algebraic and transcendental functions.
- 3. Model and solve application problems using derivatives and integrals of algebraic and transcendental functions.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Calculate limits and use limit notation.
- 2. Determine continuity of a function at a real value.
- 3. Determine derivatives of polynomial, rational, algebraic, exponential, logarithmic, and trigonometric functions.
- 4. Use techniques of differentiation, including product, quotient, and chain rules; determine derivatives implicitly and determine derivatives of inverse functions.
- 5. Apply derivatives to graphing, optimization, and science problems.
- 6. Determine antiderivatives of polynomial, rational, algebraic, exponential, logarithmic, and trigonometric functions.
- 7. Use limits of Riemann sums to evaluate definite integrals to find areas.

- 8. Evaluate definite integrals using the fundamental theorem of calculus.
- 9. Use Trapezoidal and Simpson's Rules to approximate definite integrals.
- 10. Apply definite integration to compute area, volumes, and arc length, and to solve problems in science and related fields.
- 11. Evaluate integrals with the use of tables or a computer algebra system.

Topics and Scope:

- I. Limits
 - A. Definition
 - B. Limits from graphs
 - C. Limits evaluated analytically
 - 1. Limit laws
 - 2. Limits at infinity
 - 3. Infinite limits
 - 4. Indeterminate forms
- II. Continuity
 - A. Definition
 - B. Determining continuity from definition
 - C. Continuity from graphs
- III. The Derivative
 - A. Difference quotient
 - 1. Slope of the secant line
 - 2. Average rate of change
 - B. Limit definition and evaluating the derivative from the definition
 - C. Interpreting the derivative
 - 1. Slope of the tangent line
 - 2. Instantaneous rate of change, velocity, acceleration
 - D. Rules of differentiation
 - E. Product, quotient, and chain rules
 - F. Basic differentiation formulas
 - 1. Algebraic
 - 2. Trigonometric
 - 3. Exponential
 - 4. Logarithmic
 - 5. Hyperbolic
 - 6. Inverses of functions
 - G. Antiderivatives
- IV. Applications of the Derivative
 - A. Implicit differentiation
 - B. Mean value theorem
 - C. Graphing curves
 - D. Linearization and differentials
 - E. Related rates
 - F. Optimization
 - G. Other applications and modeling
 - H. L'Hospital's rule
- V. The Integral

- A. Definite integrals as limits of Riemann sums
- B. Definite and indefinite integrals
- C. Fundamental theorem of calculus
- D. Integration of polynomial, logarithmic, exponential, and trigonometric functions
- E. Integration by substitution
- F. Numerical integration using Trapezoidal and Simpson's Rules
- G. Evaluation by tables or computer algebra systems
- VI. Applications of the Integral
 - A Area
 - B. Volumes
 - C. Arc length
 - D. Separable differential equations
 - E. Other applications and modeling

Assignment:

- 1. Daily reading outside of class (20-50 pages per week)
- 2. Problem set assignments from required text or supplementary materials chosen by the instructor (1-6 assignment sets per week)
- 3. Quizzes (0-4 per week)
- 4. Exams (2-7 per term)
- 5. Final Exam
- 6. Projects, for example, computer explorations or modeling activities (0-10 per term)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Problem sets

Problem solving 5 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations

Exams: All forms of formal testing, other than skill performance exams.

Quizzes, exams, final exam

Exams 70 - 95%

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects		Other Category 0 - 10%
----------	--	---------------------------

Representative Textbooks and Materials: Calculus: Early Transcendentals. 8th ed. Stewart, James. Cengage Learning. 2016 (classic)