APED 369 Course Outline as of Spring 2020

CATALOG INFORMATION

Dept and Nbr: APED 369 Title: APP PLUMBERS, HVAC, 10TH Full Title: Apprentice Plumbers, HVAC/Refrigeration, Tenth Semester Last Reviewed: 5/13/2024

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	18	Lecture Scheduled	54.00
Minimum	4.00	Lab Scheduled	3.00	8	Lab Scheduled	54.00
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	108.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 108.00

Total Student Learning Hours: 216.00

Title 5 Category:	AA Degree Non-Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Related supplemental instruction of heating, ventilation, air conditioning, and refrigeration for apprentice plumbers and pipefitters.

Prerequisites/Corequisites:

Recommended Preparation:

Limits on Enrollment:

Indentured apprentice.

Schedule of Classes Information:

Description: Related supplemental instruction of heating, ventilation, air conditioning, and refrigeration for apprentice plumbers and pipefitters. (Grade Only) Prerequisites/Corequisites: Recommended: Limits on Enrollment: Indentured apprentice. Transfer Credit: Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	Effective:	Inactive:
CSU Transfer	: Effective:	Inactive:	
UC Transfer:	Effective:	Inactive:	

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Describe and demonstrate electrical/ plumbing principles and regulations related to heating, ventilation, air conditioning, and refrigeration trade.
- 2. Apply best practices in practical environment related to heating, ventilation, air conditioning, and refrigeration trade.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Define, analyze and demonstrate advanced control systems, concepts, and electrical troubleshooting.
- 2. Analyze, explain, discuss, and demonstrate advanced electrical systems.

Topics and Scope:

- I. Advanced Control Systems
 - A. Electronic and direct digital control (DDC) systems
 - B. Theory of operation and function in individual control devices
 - C. Construction of simple electronic and DDC systems
 - D. Application of electronic and DDC controls to heating/cooling systems
- II. Advanced Electrical Systems
 - A. Introduction to advanced electrical control devices
 - B. Terms and definitions
 - C. Theory and function:
 - 1. Variable frequency drives
 - 2. Power inverters
 - 3. Power converters
 - 4. Rectifiers
 - 5. Capacitance systems
 - 6. Power transmission
 - 7. Safety devices

All topics are covered in the lecture and lab portions of the course.

Assignment:

Lecture-Related Assignments:

- 1. Written homework assignments (1 to 2 sets per week)
- 2. Project homework assignments (1 to 2 sets per week)
- 3. Weekly reading 10-15 pages
- 4. Quizzes and examinations (4 to 6 per semester)

Lab-Related Assignment:

1. Class performances and field work (on-the-job demonstrations) of skill development, safety practices, equipment, and material handling

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework assignments; field work

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Class performances; field work

Exams: All forms of formal testing, other than skill performance exams.

Quizzes and examinations to include multiple choice, true/false, matching items, and completion

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance and participation

Representative Textbooks and Materials:

Electric Controls for Mechanical Equipment Service. International Pipe Trades Joint Training Committee. 2009 (classic)

Problem solving 10 - 25%

Writing

0 - 0%

Skill Demonstrations 50 - 65%

Exams 10 - 20%

Other Category 5 - 10%