CONS 71B Course Outline as of Fall 2019

CATALOG INFORMATION

Dept and Nbr: CONS 71B Title: MATERIALS/METHODS CONS 2 Full Title: Materials and Methods of Construction 2 Last Reviewed: 10/8/2018

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	2.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	2.00	Lab Scheduled	0	8	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	2.00		Contact Total	35.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00

Total Student Learning Hours: 105.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Study of foundation systems; wall, floor and roof framing systems; exterior and interior finishes; windows and doors; and sustainability issues as found in heavy timber, heavy steel, masonry and concrete building construction systems. Includes calculations and sketching.

Prerequisites/Corequisites: Course Completion of CONS 71A

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Study of foundation systems; wall, floor and roof framing systems; exterior and interior finishes; windows and doors; and sustainability issues as found in heavy timber, heavy steel, masonry and concrete building construction systems. Includes calculations and sketching. (Grade or P/NP) Prerequisites/Corequisites: Course Completion of CONS 71A Recommended:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	l		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	:Transferable	Effective:	Spring 2004	Inactive:	Fall 2025
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Describe how the elements of heavy timber, heavy steel, masonry and concrete building systems are applied in making foundations, floors, walls and roofs.
- 2. Graphically represent common connections between elements of heavy timber, heavy steel, masonry and concrete building systems.
- 3. Evaluate the sustainability aspects of the building systems and materials covered.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Identify and define the elements of heavy timber, heavy steel, masonry and concrete building systems used in making foundations, floors, walls and roofs.
- 2. Sketch common connections found in heavy timber, heavy steel, masonry and concrete building construction systems.
- 3. Calculate preliminary sizes of framing elements used in heavy timber, heavy steel, masonry and concrete building construction systems.
- 4. Describe the manufacturing processes for major materials used in heavy timber, heavy steel, masonry and concrete building construction systems.
- 5. Define sustainability attributes of heavy timber, heavy steel, masonry and concrete building construction systems.

Topics and Scope:

- I. Introduction and Overview
 - A. Typical commercial building construction versus typical residential building construction 1. Examples of heavy timber, heavy steel, masonry and concrete building systems
 - 2. Review of building code classification of "types"
 - B. Why sustainability is important
 - C. Review of basic sketching skills

- D. Review of types of calculations used in this class
- II. Foundation Systems for Large Buildings
 - A. Loads and load transfer to foundations
 - B. Excavation and slope control
 - C. Deep foundation types: caissons, piles, floating and mat
 - D. Special cases
 - E. Sustainability issues
 - F. Preliminary calculation of sizes and sketching of foundations
- III. Heavy Timber Construction
 - A. Description of the system, its elements and attributes
 - B. Connection of frame members to each other and to the foundation
 - C. Dealing with long spans
 - D. Code concerns
 - E. Sustainability issues
- F. Preliminary calculation of frame element sizes and sketching of connections
- IV. Heavy Steel Construction
 - A. Description of the system, its elements and attributes
 - B. Connection of frame members to each other and to the foundation
 - C. Dealing with long spans
 - D. Code concerns
 - E. Sustainability issues
 - F. Preliminary calculation of frame element sizes and sketching of connections
 - G. Manufacturing heavy steel
- V. Masonry Construction: Brick, Stone and Concrete Block
 - A. Description of different masonry systems, elements and attributes of each
 - B. Manufacturing brick, concrete blocks and mortar
 - C. Quarrying and preparation of stone
 - D. Connection of elements to each other and to the foundation
 - E. Code concerns
 - F. Dimensioning and sketching of connections
 - G. Sustainability issues
- VI. Concrete Construction
 - A. History of use
 - B. Concrete: characteristics and manufacture
 - C. Making formwork and placing concrete
 - D. Principles of reinforcing for concrete
 - E. Sustainability issues related to concrete
- VII. Site Cast/in situ Concrete Framing Systems
 - A. Slabs, walls and columns
 - B. Principles of a one-way concrete system
 - C. Principles of a two-way concrete system
 - D. Post-tensioning a site cast concrete system
 - E. Principles of economic design of site cast concrete systems
 - F. Code concerns
 - G. Sustainability issues related to site cast concrete framing systems
 - H. Preliminary calculation of frame element sizes and sketching of connections
- VIII. Precast Concrete Framing Systems
 - A. Typical precast structural elements and how they are manufactured
 - B. Principles of assembly concepts for precast buildings
 - C. Connections of elements in the system
 - D. Code concerns
 - E. Sustainability issues related to precast concrete framing systems

F. Preliminary calculation of frame element sizes and sketching of connections IX. Roofs for Large Buildings

A. Description of different low-sloped systems, elements and attributes of each

- B. Principles of low slope roofing systems
- C. Connections of elements in the system
- D. Common problems of low slope roofing systems
- E. Code concerns
- F. Sustainability issues
- G. Sketching of connections

X. High-Rise Cladding Systems including Windows and Doors

- A. Description of different cladding systems, elements and attributes of each
- B. Design requirements for cladding systems
- C. Principles of designing watertight joints in cladding
- D. Sealant joints in cladding
- E. Code concerns
- F. Sustainability issues
- G. Sketching of connections

Assignment:

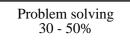
- 1. Reading of text (20-30 pages per week) and preparation of outlines from readings (2-3 pages each)
- 2. Problem solving homework assignments involving analysis and synthesis of course material, including sketches, calculations and interpreting working drawing content (8-12)
- 3. Research papers (1-2 with 3-5 pages each)
- 4. Quizzes (2-3)
- 5. Final exam, and/or final project and presentation

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Research papers and chapter outlines

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.


Problem solving homework assignments, sketches & calculations

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Writing 20 - 35%

Skill Demonstrations 0 - 0% Quizzes and optional final exam

Other: Includes any assessment tools that do not logically fit into the above categories.

Class participation and/or presentation of final project

Representative Textbooks and Materials:

Allen, Edward; Iano, Joseph: Fundamentals of Construction: Materials and Methods. John Wiley & Sons, Fifth Edition, 2008 (classic) Instructor prepared materials

Exams 10 - 30%	

Other Category 0 - 20%