FIRE 72 Course Outline as of Fall 2019

CATALOG INFORMATION

Dept and Nbr: FIRE 72 Title: FIRE BEHAVIOR/COMBUST

Full Title: Fire Behavior and Combustion

Last Reviewed: 9/10/2018

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: FIRE 60A

Catalog Description:

Theory and fundamentals of fire ignition, extension, behavior and control. An in-depth study of fire chemistry, fire characteristics of materials, extinguishing and fire control techniques.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: Theory and fundamentals of fire ignition, extension, behavior and control. An indepth study of fire chemistry, fire characteristics of materials, extinguishing and fire control

techniques. (Grade Only) Prerequisites/Corequisites:

Recommended: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment: Transfer Credit: CSU; Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 1981 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Define basic terms and concepts related to chemistry and fire behavior.
- 2. Describe the different states of matter, their influence on fire behavior and the chemical processes associated with combustion
- 3. Describe the properties of fire suppression agents and the techniques used to suppress fires

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Describe the impact of fire in the United States and the need for fire research agencies
- 2. Identify the systems of measurement used in the study of fire behavior
- 3. Describe the different states of matter and their physical and chemical properties
- 4. Summarize the laws of heat transfer and their hazards
- 5. Describe the properties of gaseous combustibles
- 6. Describe the properties of liquid combustibles
- 7. Describe the properties of solid combustibles
- 8. Describe the combustion process and their associated products
- 9. Describe the hazards of smoke, heat and the combustion process
- 10. Describe how fire gases develop and move in the open and confined spaces
- 11. Describe the agents used to extinguish fires and the properties that make them effective
- 12. Describe the principles of wildland fire behavior and the factors that influence their ignition and development
- 13. Define explosive fire behavior and distinguish between the different types of explosions

Topics and Scope:

- I. Introduction to Fire History
 - A. History of fire
 - B. Natural causes of fire

- C. Fire's impact on society D. Fire research
- II. Fire Measurement and the SI Systems of Units
 - A. Length, area and volume
 - B. Mass and density
 - C.Time units
 - D. Force and pressure units
 - E. Energy and enthalpy units
 - F. Power units
 - G. Temperature units
 - H. Conversion factors

III. States of Matter and Physical and Chemical Changes

- A. States of matter
 - 1. Characterization of phases
 - 2. Properties of gases
 - 3. Properties of liquids
 - 4. Properties of solids
- B. Physical and chemical changes
 - 1. Physical changes
 - 2. Chemical changes
 - a. Energetics of chemical change
 - b. Chemical equilibrium and chemical kinetics

IV. Heat Transfer

- A. Temperature and heat
- B. Modes of heat transfer
 - 1. Conductive heat transfer
 - 2. Convective heat transfer
 - 3. Radiative heat transfer
- C. Hazards from heat transfer
 - 1. Life safety
 - 2. Endurance of structures
- V. Gaseous Combustibles
 - A. Categorization of flames
 - 1. Premixed versus diffusion flames
 - 2. Laminar versus turbulent flames
 - B. Ignition of gases
 - C. Flammability limits and propagation rates of premixed flames
 - 1. Flammability limits
 - 2. Burning velocity
 - 3. Explosions deflagrations and detonations
 - D. Chemical mechanisms of the combustion of gases
 - 1. Elementary chemistry
 - 2. Hydrogen oxidation
 - 3. Pre-mixed methane-oxygen flame chemistry
 - 4. Combustion of larger hydrocarbon fuels
 - E. Specific hazardous classes
 - 1. Hydrogen
 - 2. Acetylene
 - 3. Methane
 - 4. Ethylene
 - 5. Ammonia

VI. Liquid Combustibles

A.Ignition of liquids

- 1. Flash point
- 2. Fire point
- 3. Auto-ignition temperature
- B. Burning rates of liquid pools
- C. Flame spread rates over liquid surfaces
- D. Hazards of liquid fuel fires

VII. Solid Combustibles

- A. Fire stages and metrics
 - 1. Solids versus gases and liquids
 - 2. Materials and products
 - 3. Pyrolysis
 - 4. Ignition to flaming combustion
 - 5. Ignition to non-flaming combustion
 - 6. Char formation and melting
 - 7. Mass burning and flame spread

B.Combustible solids

- 1.Cellulosic and other natural materials
- 2. Synthetic polymer materials
- 3. Fire retardants
- 4. Composite materials and furnishings
- 5. Acid-base pairs
- 6. Metals
- 7. Exothermic materials

VIII. Combustion Products

- A. Smoke aerosols
- B. Chemical combustion
- C. Soot formation
- D. Aerosol soot formation
- E. Measurement of aerosol yields
- F. Quantity of smoke particles produced
- G. Visibility through smoke
- H. Gaseous combustion products
 - 1. Carbon dioxide and water
 - 2. Carbon monoxide
 - 3. Partially oxidized organic materials
 - 4. Hydrogen halides
 - 5. Hydrogen cyanide
 - 6. Nitrogen oxides
 - 7. Other combustion gases
- I. Smoke alarms

IX. Smoke and Heat Hazards

- A. Hazards of smoke exposure
- B. Toxicity of prominent gases
 - 1. Carbon monoxide
 - 2. Carbon dioxide
 - 3. Hydrogen cyanide
- C. Hydrogen Chloride and hydrogen bromide
- D. Nitrogen oxides
- E. Organic irritants
- F. Other toxic species
- X. Movement of Fire Gases

- A. Structure of a fire plum in the open
- B. Fire plume under a ceiling
- C. Filling of a fire compartment with smoke
- D. Smoke flow from a compartment opening
- E. Smoke movement in a building
- XI. Fire Extinguishing Agents
 - A. Categories of fire suppressing agents
 - B. Aqueous agents
 - 1. Water
 - 2. Enhanced water
 - 3. Aqueous foams
 - C. Non-aqueous agents
 - 1. Inert gases
 - 2. Active halogenated agents
 - 3. Dry chemical agents
 - D. Special considerations for fire extinguishment
 - 1. Extinguishment of flowing gas flames
 - 2. Extinguishment of shallow liquid fuel fires
 - 3. Extinguishment of deep liquid fuel fires
 - 4. Ultrafast extinguishment of fires
- XII. Wildland Fire Behavior
 - A. The wildland fire triangle
 - B. Modes of heat transfer
 - C. Environmental factors
 - D. Fuel types and factors
 - E. Topography
 - F. Fire weather
- XIII. Explosive Fire Behavior
 - A. Causes and types of explosions
 - B. Explosive reaction
 - C. Strength of explosives

Assignment:

- 1. Reading 20 to 30 pages per week
- 2. Research paper
- 3. Classroom group or chat room activities
- 4. Glossary/definition assignment
- 5. One to two group or individual research project(s) and oral or power point presentation(s)
- 6. Quizzes (8 10)
- 7. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Research paper, glossary/definition assignment

Writing 10 - 20%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Research paper, group presentation

Problem solving 10 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Group presentation, group evaluations

Skill Demonstrations 10 - 20%

Exams: All forms of formal testing, other than skill performance exams.

Quizzes, final exam

Exams 50 - 60%

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance and participation

Other Category 5 - 10%

Representative Textbooks and Materials:

Principles of Fire Behavior and Combustion. 4th ed. Gann, Richard and Friedman, Raymond. Jones and Bartlett. 2015

Principles of Fire Behavior. 3rd ed, Quintiere, James. Delmar Publishers 2014 (classic)