PHYS 10L Course Outline as of Fall 1981

CATALOG INFORMATION

Dept and Nbr: PHYS 10L Title: INTRO PHYSICS LAB Full Title: Introduction to Physics Lab Last Reviewed: 2/8/2010

Units		Course Hours per Week	N	Nbr of Weeks	Course Hours Total	
Maximum	1.00	Lecture Scheduled	0	17.5	Lecture Scheduled	0
Minimum	1.00	Lab Scheduled	3.00	17.5	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 0.00

Total Student Learning Hours: 52.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Experimental laboratory to accompany Physics 10.

Prerequisites/Corequisites:

Phys 10 completed or in progress.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Lab experiments to accompany Physics 10. (Grade or P/NP) Prerequisites/Corequisites: Phys 10 completed or in progress. Recommended: Limits on Enrollment: Transfer Credit: CSU;UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area B3 B3	Laboratory Act Laboratory Act	ivity ivity	Effective: Effective: Fall 2012 Fall 1981	Inactive: Inactive: Fall 2015 Fall 2012
IGETC:	Transfer Area 5C 5C	Fulfills Lab Re Fulfills Lab Re		Effective: Fall 2012 Fall 1981	Inactive: Fall 2015 Fall 2012
CSU Transfer	: Transferable	Effective:	Fall 1981	Inactive:	Fall 2015
UC Transfer:	Transferable	Effective:	Fall 1981	Inactive:	Fall 2015

CID:

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of this course, the student should be able to:

- 1. Make measurements using a variety of measuring devices.
- 2. Construct a graph displaying experimental data using a computer graphing program, determine the slope of a line, read coordinate points from a graph, and describe what a graph indicates about the plotted variables.
- 3. Set up and perform physics experiments following written or verbal instructions.
- 4. Calculate quantities involving experimental data using calculators and/or spreadsheet calculations.
- 5. Interpret/discuss the meaning/significance of experimental results.
- 6. Record a prediction of what will occur in doing an experiment, an observation of what happens, and a discussion of how the observation confirms or fails to confirm the prediction.

Topics and Scope:

- 1. Relationships between Units
- 2. Introduction to Motion
- 3. Acceleration due to Gravity
- 4. Uniformly Accelerated Motion
- 5. An Experiment with Baseballs and Bicycles
- 6. Momentum
- 7. Waves
- 8. Sound Waves
- 9. Electrostatic Charge
- 10. Light Bulbs in Electrical Circuits
- 11. Electrical Energy
- 12. Images from Lenses
- 13. Light Patterns from Pin Holes
- 14. The Prism Spectrometer

15. Radioactive Decay Analog

Assignment:

- 1. No less than 12 laboratory experiments.
- 2. No more than 1 mid-term exam.
- 3. Final exam.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Lab reports

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Completion, PHYSICS PROBLEMS TO SOLVE

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative Textbooks and Materials:

Physics 10L Lab Manual by Sally Heath.

Writing 0 - 0%	

Problem solving 70 - 80%

Skill Demonstrations 0 - 0%

> Exams 20 - 30%

Other Category 0 - 0%