CS 12 Course Outline as of Fall 2019

CATALOG INFORMATION

Dept and Nbr: CS 12 Title: ASSEMBLY LANG PROG Full Title: Assembly Language Programming/Computer Architecture Last Reviewed: 1/28/2019

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	4.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 140.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	CIS 22

Catalog Description:

Introductory computer architecture and techniques of assembly language programming as they apply to modern microprocessors such as I-86, ARM and/or PowerPC. Topics include theory and concepts of virtual memory, pipelines, caches, and multitasking, hardware architecture (bus, memory, stack, I/O, interrupts), design of structured assembly language code, use of software interrupts, survey arithmetic notations (binary, hexadecimal, floating- point, binary-coded decimal), input/output, and disk processing concepts.

Prerequisites/Corequisites:

Course Completion of CS 10B

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Introductory computer architecture and techniques of assembly language programming as they apply to modern microprocessors such as I-86, ARM and/or PowerPC. Topics include theory and concepts of virtual memory, pipelines, caches, and multitasking,

hardware architecture (bus, memory, stack, I/O, interrupts), design of structured assembly language code, use of software interrupts, survey arithmetic notations (binary, hexadecimal, floating- point, binary-coded decimal), input/output, and disk processing concepts. (Grade Only) Prerequisites/Corequisites: Course Completion of CS 10B Recommended: Limits on Enrollment: Transfer Credit: CSU;UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area			Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer:	Transferable	Effective:	Fall 1982	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1982	Inactive:	

CID:

CID Descriptor:COMP 142	Computer Architecture and Organization
SRJC Equivalent Course(s):	CS12

Certificate/Major Applicable:

Major Applicable Course

Approval and Dates

Version:	011	Course Created/Approved	8/1/1981
Version Created:	10/26/2017	Course Last Modified:	6/5/2021
Submitter:	Dave Harden	Course last full review:	1/28/2019
Version Status:	Approved (Changed Course)	Prereq Created/Approved:	1/28/2019
Version Status Date:	1/28/2019	Semester Last Taught:	Spring 2021
Version Term Effective	: Fall 2019	Term Inactive:	

COURSE CONTENT

Student Learning Outcomes:

Upon completion of the course, students will be able to:

- 1. Describe concepts of virtual memory, pipelines, caches, and multitasking, hardware architecture (bus, memory, stack, Input/Output (I/O), interrupts).
- 2. Apply structured assembly language code, use of software interrupts, survey arithmetic notations (binary, hexadecimal, floating- point, binary-coded decimal), input/output, and disk processing concepts.
- 3. Code, assemble, link, and debug Assembly Language programs, including an interrupt handler.
- 4. Demonstrate how fundamental high-level programming constructs are implemented at the machine-language level.

Objectives:

Upon completion of the course, students will be able to:

- 1. Distinguish and categorize the architectural components of a microcomputer.
- 2. Apply microcomputer design principles to identify architectural components of the Intel family of microprocessors and demonstrate ability to utilize microcomputer capabilities through assembly language programs.
- 3. Create a complete set of source modules using standard design tools.
- 4. Prepare executable assembly language programs which include at least one subroutine library module.
- 5. Create programs which carry out binary arithmetic operations, floating-point, and BCD (binary-coded decimal).
- 6. Demonstrate ability to convert numbers to and from decimal, binary, octal, and hexadecimal.
- 7. Use three BIOS (basic input-output system).
- 8. Write an interrupt handler.

Topics and Scope:

- I. Assembly Language Environment
 - A. Software design process
 - B. Programming tools
 - 1. editors
 - 2. assemblers
 - 3. debuggers
 - 4. source modules
 - C. Hardware environment
 - 1. networking
 - 2. workstations
 - 3. peripheral devices
 - D. Assembly language overview
 - 1. general syntax notation
 - 2. instruction categories
 - 3. high-level language interface
 - 4. sub-routine library modules
- II. Data Types and Number System
 - A. Numeric data
 - 1. number system
 - a. binary, decimal, octal, hexadecimal
 - b. number system conversions
 - 2. arithmetic notation
 - a. binary, signed and unsigned
 - b. floating point
 - c. two's complement
 - d. BCD (binary-coded decimal)
 - B. Character data
 - C. ASCII (American Standard Code for Information Interchange) character set
- III. Computer Architecture
 - A. Microprocessors
 - B. Data, control, address bus
 - C. Registers
 - D. Memory
 - E. Stack
 - F. Interrupts
 - G. Peripheral device I/O

- H. Virtual memory
- I. Pipelines and caches
- J. CISC (complex instruction set computer) versus RISC (reduced instruction set computer)
- IV. Instruction Set
 - A. Addressing modes
 - B. Data transfer instructions
 - C. Software interrupt structure
 - D. Arithmetic operations
 - E. Control structures
 - F. Stack operations
 - G. String operations
- V. Peripheral Device Access
 - A. Graphics displays
 - B. Disk I/O
 - C. Standard list device
- VI. Von Neumann Machine

Assignment:

- 1. Read approximately 25 pages per week from textbook
- 2. Programming exercises:
 - a. Hierarchy charts and structured flowcharts
 - b. Code, assemble, link, and debug approximately 10 Assembly Language programs, including an interrupt handler
- 3. Write technical documentation to accompany programs
- 4. Two to four quizzes and exams

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written documentation

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Programming exercises

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Writing 0 - 10%

Problem solving	
40 - 60%	

Skill Demonstrations
0 - 0%

Exams			
40 -	60%		

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance and participation

Other Category 0 - 10%

Representative Textbooks and Materials:

x86-64 Assembly Language Programming with Ubuntu (1.1.14). Jorgensen, Ed. 2018 Introduction to Computer Organization: ARM Assembly Language Using the Raspberry Pi. Plantz, Robert. 2017

OTHER REQUIRED ELEMENTS

STUDENT PREPARATION

Matric Assessment Required:	Х	Exempt From Assessment
Prerequisites-generate description:	А	Auto-Generated Text
Advisories-generate description:	NA	No Advisory
Prereq-provisional:	Ν	NO
Prereq/coreq-registration check:	Y	Prerequisite Rules Exist
Requires instructor signature:	Ν	Instructor's Signature Not Required

BASIC INFORMATION, HOURS/UNITS & REPEATABILITY

Method of instruction:	02	Lecture
	72	Internet-Based, Delayed Interaction
	71	Internet-Based, Simultaneous Interaction
Area department:	CS	Computer Studies
Division:	72	Arts & Humanities
Special topic course:	Ν	Not a Special Topic Course
Program status:	1	Major Applicable Course
Repeatability:	00	Two Repeats if Grade was D, F, NC, or NP
Repeat group id:		

SCHEDULING

Audit allowed:	Ν	Not Auditable
Open entry/exit:	Ν	Not Open Entry/Open Exit
Credit by exam:	Ν	Credit by examination not allowed
Budget code: Program:	0000	Unrestricted
Budget code: Activity:	0701	Computer & Information Science

OTHER CODES

Discipline:	Computer Science	
Basic skills:	Ν	Not a Basic Skills Course
Level below transfer:	Y	Not Applicable
CVU/CVC status:	Y	Distance Ed, Not CVU/CVC Developed
Distance Ed Approved:	Y	<a <br="" target="_new">href='SR_DisplayDocument.aspx ?CFID=31&CVID=38123'>Excl usively online or other technology based instruction
Emergency Distance Ed Approved:	Ν	None
Non-credit category:	Y	Not Applicable, Credit Course
Classification:	Y	Liberal Arts and Sciences Courses
SAM classification:	E	Non-Occupational
TOP code:	0706.00	Computer Science (Transfer)
Work-based learning:	Ν	Does Not Include Work-Based Learning
DSPS course:	Ν	Not a DSPS Course
In-service:	Ν	Not an in-Service Course