ENGR 6 Course Outline as of Fall 2018

CATALOG INFORMATION

Dept and Nbr: ENGR 6 Title: MATLAB FOR ENGINEERS

Full Title: Programming in MATLAB for Engineers

Last Reviewed: 12/12/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Engineering problem solving using the MATLAB computer programming environment. It introduces the fundamentals of procedural and object-oriented programming, numerical analysis, and data structures. Students outline, write, test, and debug computer programs to solve engineering, physics, and mathematics problems and display results.

Prerequisites/Corequisites:

Completion of MATH 1A or higher (V2)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Engineering problem solving using the MATLAB computer programming environment. It introduces the fundamentals of procedural and object-oriented programming, numerical analysis, and data structures. Students outline, write, test, and debug computer programs to solve engineering, physics, and mathematics problems and display results. (Grade or P/NP)

Prerequisites/Corequisites: Completion of MATH 1A or higher (V2)

Recommended:

Limits on Enrollment: Transfer Credit: CSU;UC.

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 2000 Inactive:

UC Transfer: Transferable Effective: Fall 2000 Inactive:

CID:

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

During the course, students will:

- 1. Utilize methodical approaches to develop computer algorithms that perform engineering-related tasks.
- 2. Create, test, and debug sequential MATLAB programs to perform those tasks.
- 3. Solve engineering-related computational problems by applying common numerical analysis techniques and MATLAB engineering tools.
- 4. Create computer programs to analyze and visualize data with tables, charts, and graphs.
- 5. Demonstrate understanding and use of standard data structures and object-oriented programming techniques.
- 6. Document computer programs in a careful and complete manner in order to facilitate editing by another programmer.

Lab objectives (in addition to the objectives above):

- 7. Develop solution algorithms in a project-based environment with only partially defined project parameters.
- 8. Practice collaborative problem solving and project management skills including peer review and evaluation.
- 9. Develop oral presentation skills.

Topics and Scope:

- I. Overview of Computer Systems and the MATLAB Environment
 - A. Compiled vs. interpreted languages
 - B. Procedural vs. object-oriented programming
 - C. MATLAB's interactive workspace
 - D. MATLAB's documentation and help features

II. Basic Interpreted CodeA. VariablesB. Expressions

C. Precedence of operations

III. Elementary Functions

A. Math functions

B. Logical functions

C. Referencing functions

IV. Arrays

A. Assigning

B. Indexing

C. Operations

V. Computational Problem-Solving Methodologies

A. Problem definition and specifications

B. Input and output information and variables

C. Working a special case by hand

D. Design and implementation of computer algorithm

E. Test of algorithm

VI. Algorithm and Coding Practices

A. Pseudocode

B. Flowcharts

C. Comments and documentation blocks

VII. Formatted Input and Output

A. Input function

B. Menu function

C. Disp function

D. Format strings

VIII. File Management

A. MATLAB data files

B. MATLAB program files

C. MATLAB object files

D. MATLAB figure files

E. Non-MATLAB file reading

IX. Graphical Display

A. Independent variable set-up in 1 and 2 dimensions

B. Two-dimensional plotting

C. Three-dimensional surface plots

D. Plot annotation expectations

E. Manual annotation options

F. Annotation functions

X. Selection Programming Structures

A. Relational and logical operators and functions

B. If statements with else & elseif

C. Switch-case construction

XI. Repetition Programming Structures

A. For loops

B. While loops

XII. Functions

A. User-defined functions

B. Multiple input and output functions

C. Function handles

D. Random functions

- E. MATLAB's numerical analysis functions
- XIII. Recursion
- XIV. Data Types
 - A. Strings and character arrays
 - B. Cell arrays
 - C. Structured arrays
 - D. Logical arrays
 - E. Graphical objects
 - F. User data structures
- XV. Sorting and Searching
 - A. Bubble sort
 - B. Insertion sort
 - C. Lookup techniques
- XVI. Object-Oriented Programming
 - A. Concepts
 - B. Terminology
 - C. Properties
 - D. Methods
- XVII. Graphical User Interfaces
 - A. MATLAB's graphical user interface objects
 - B. Object generation and parameter modification
 - C. Graphical user interface activation
- XVIII. Numerical Analysis Techniques
 - A. Linear system solutions
 - B. Vector analysis
 - C. Data interpolation
 - D. Least-squares regression and linearization
 - E. Numerical differentiation and integration
 - F. Solving ordinary differential equations
 - G. Series approximation and error
 - H. Solving equations in one variable
 - I. Optimization
 - J. Simulation
- Lab Topics and Scope (in addition to the topics above):
- XIX. Interfacing to the External Environment
- XX. Group Interaction Skills and Peer Review and Evaluation
- XXI. Presentation Skills

Assignment:

Lecture Related Assignments:

- 1. Reading (15 pages per week)
- 2. Homework assignments using MATLAB (15-25)
- 3. Objective examinations (2-4) and a final

Lab Related Assignments:

- 1. Lab exercises using MATLAB (10-15)
- 2. Group projects including presentations (1-3)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework Assignments, Lab Exercises, Group Projects

Problem solving 40 - 70%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Exams and Final

Exams 30 - 60%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

MATLAB an Introduction with Applications. 5th ed. Gilat, Amos. Wiley. 2015 Introduction to MATLAB. Knoesen, Andrea. Zybook. 2016 Introduction to MATLAB for Engineers. 3rd ed. Palm, William. McGraw-Hill. 2011 (classic)