CS 10B Course Outline as of Fall 2018

CATALOG INFORMATION

Dept and Nbr: CS 10B Title: PROGRAMMING CONCEPTS 1 Full Title: Programming Concepts and Methodologies 1 Last Reviewed: 2/8/2021

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Introduces the discipline of computer science using C++ and utilizing programming and practical hands-on problem solving.

Prerequisites/Corequisites: Course Completion of CS 10A

Recommended Preparation: Eligibility for ENGL 1A or equivalent

Limits on Enrollment:

Schedule of Classes Information:

Description: Introduces the discipline of computer science using C++ and utilizing programming and practical hands-on problem solving. (Grade or P/NP) Prerequisites/Corequisites: Course Completion of CS 10A Recommended: Eligibility for ENGL 1A or equivalent Limits on Enrollment: Transfer Credit: CSU;UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	I		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	l		Effective:	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 2018	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 2018	Inactive:	

CID:

CID Descriptor:COMP 122 Programming Concepts and Methodology I SRJC Equivalent Course(s): CS10A OR CS10B

Certificate/Major Applicable:

Both Certificate and Major Applicable

Approval and Dates

Version:	01	Course Created/Approved	1:5/8/2017
Version Created:	4/18/2017	Course Last Modified:	6/5/2021
Submitter:	Dave Harden	Course last full review:	2/8/2021
Version Status:	Approved New Course (First Version)	Prereq Created/Approved	: 2/8/2021
Version Status Date:	5/8/2017	Semester Last Taught:	Spring 2021
Version Term Effective	e: Fall 2018	Term Inactive:	Fall 2021

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Design, implement, test, and debug a program that uses each of the following fundamental programming constructs: basic computation, simple I/O, standard conditional and iterative structures, and the definition of functions.
- 2. Use pseudocode or a programming language to implement, test, and debug algorithms for solving simple problems.
- 3. Summarize the evolution of programming languages illustrating how this history has led to the
- paradigms available today.
- 4. Demonstrate different forms of binding, visibility, scoping, and lifetime management

Objectives:

Upon completion of this course students will be able to:

- 1. Choose appropriate conditional and iteration constructs for a given programming task.
- 2. Apply the techniques of structured (functional) decomposition to break a program into smaller pieces.
- 3. Identify the necessary properties of good algorithms.
- 4. Create algorithms for solving simple problems.
- 5. Identify at least one distinguishing characteristic for each of the programming paradigms covered in this unit.

- 6. Explain the value of declaration models, especially with respect to programming-in-the-large.
- 7. Identify and describe the properties of a variable such as its associated address, value, scope, persistence, and size.
- 8. Describe strategies that are useful in debugging.

Topics and Scope:

- I. Fundamental Programming Constructs
 - A. Basic syntax and semantics of a higher-level language
 - B. Variables, types, expressions, and assignment
 - C. Simple I/O
 - D. Conditional and iterative control structures
 - E. Functions and parameter passing
 - F. Structured decomposition
- II. Algorithms and Problem-Solving
 - A. Problem-solving strategies
 - B. The role of algorithms in the problem-solving process
 - C. Implementation strategies for algorithms
 - D. Debugging strategies
 - E. The concept and properties of algorithms
- III. Overview of Programming Languages
 - A. History of programming languages
 - B. Brief survey of programming paradigms
 - C. Procedural languages
 - D. Object-oriented languages
- IV. Declarations and Types
 - A. The conception of types as a set of values together with a set of operations Declaration models (binding, visibility, scope, and lifetime)
 - B. Overview of type-checking

All topics are covered in both the lecture and lab parts of the course.

Assignment:

Lecture Related Assignments:

- 1. Read approximately 30 pages per week
- 2. Complete 2-8 examinations including final exam

Lab Related Assignments:

1. Complete 10-15 programming assignments, with documentation, using the C++ programming language

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written program documentation

Writing 10 - 20% **Problem Solving:** Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Problem solving **Programming assignments** 20 - 60% Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams. Skill Demonstrations None 0 - 0% **Exams:** All forms of formal testing, other than skill performance exams. Exams Exams, Final Exam: (Multiple choice, true/false, matching 20 - 60% items, completion, programming problems) **Other:** Includes any assessment tools that do not logically fit into the above categories. Other Category None 0 - 0%

Representative Textbooks and Materials:

Starting Out with C++ From Control Structures through Objects. 8th ed. Gaddis, Tony. Pearson. 2014

OTHER REQUIRED ELEMENTS

STUDENT PREPARATION

Matric Assessment Required:	В	Requires Both English & Math Assessme	
Prerequisites-generate description:	U	User Generated Text	
Advisories-generate description:	А	Auto-Generated Text	
Prereq-provisional:	Y	YES	
Prereq/coreq-registration check:	Y	Prerequisite Rules Exist	
Requires instructor signature:	Ν	Instructor's Signature Not Required	

BASIC INFORMATION, HOURS/UNITS & REPEATABILITY

Method of instruction:	02	Lecture	
	04	Laboratory	
	72	Internet-Based, Delayed Interaction	
	71	Internet-Based, Simultaneous Interaction	
Area department:	CS	Computer Studies	
Division:	72	Arts & Humanities	
Special topic course:	Ν	Not a Special Topic Course	
Program status:	1	Both Certificate and Major Applicable	
Repeatability:	00	Two Repeats if Grade was D, F, NC, or NP	
Repeat group id:			

SCHEDULING

Audit allowed:	Y	Auditable
Open entry/exit:	Ν	Not Open Entry/Open Exit
Credit by exam:	Ν	Credit by examination not allowed
Budget code: Program:	0000	Unrestricted
Budget code: Activity:	0701	Computer & Information Science

OTHER CODES

Computer Science	
Ν	Not a Basic Skills Course
Y	Not Applicable
Y	Distance Ed, Not CVU/CVC Developed
Y	Either online or hybrid, as determined
	by instructor
Y	Fully Online
	Partially Online
	Online with flexible in-person activities
Ν	Agency Exam
Ν	CBE
Ν	Industry Credentials
Ν	Portfolio
Y	Not Applicable, Credit Course
Y	Liberal Arts and Sciences Courses
E	Non-Occupational
0706.00	Computer Science (Transfer)
Ν	Does Not Include Work-Based Learning
	N Y Y Y Y N N N N N Y Y E 0706.00

DSPS course:	Ν	Not a DSPS Course
In-service:	Ν	Not an in-Service Course
Lab Tier:	23	Credit Lab - Tier 3