WWTR 112 Course Outline as of Fall 2017

CATALOG INFORMATION

Dept and Nbr: WWTR 112 Title: MATH FOR WATER TECH Full Title: Math for Water and Wastewater Technology Last Reviewed: 2/13/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	ENVT 112

Catalog Description:

Practical application of mathematical calculations for hydraulics, chemicals, and solids used in the design, operation, process control and maintenance of water and wastewater distribution systems and treatment facilities.

Prerequisites/Corequisites:

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Practical application of mathematical calculations for hydraulics, chemicals, and solids used in the design, operation, process control and maintenance of water and wastewater distribution systems and treatment facilities. (Grade or P/NP) Prerequisites/Corequisites: Recommended: Limits on Enrollment:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area		Effective:	Inactive:
CSU Transfer	: Effe	ective:	Inactive:	
UC Transfer:	Effe	ective:	Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Perform calculations common to the fields of water distribution technology, water treatment technology, and wastewater treatment technology
- 2. Use a spreadsheet program such as Excel to perform calculations

Objectives:

In order to achieve these learning outcomes, during the course the students will:

- 1. Convert between common units of time, mass, length, area, volume, and temperature
- 2. Apply general mathematical concepts to calculations common in the water and wastewater industry, such as calculation of: areas, volumes, mass, density, specific gravity, ratios, percentages, median and average values, concentrations, flows, pressures, velocities, percent composition, chemical quantities, dosage, pumping rates, detention times, loading rates, efficiencies, and power usage
- 3. Complete the mathematical portions of the state certification exams for: Water Distribution System Operator (Grades 1 or 2), Water Treatment Operator (Grades 1 or 2), and Wastewater Operator (Grade 1 and 2)

Topics and Scope:

- I. Units and unit conversion with English and Metric systems
 - A. Length, areas, and volumes
 - B. Mass, density, and specific gravity
 - C. Time and flow rates
 - D. Temperature
 - E. Velocity and pressure
 - F. Price and unit price
 - G. Power and power cost
 - H. Dimensional analysis
- II. Basic arithmetic

- A. Fractions, decimals, and percentages
- B. Areas and volumes
- C. Ratios and proportions
- D. Exponents
- III. Intermediate arithmetic
 - A. Mean, median, and mode
 - B. Weighted average
 - C. Efficiency
 - D. Algebraic variable isolation
- IV. Chemistry and related calculations
 - A. pH
 - B. Concentrations
 - C. Dosages
 - D. Preparation of chemical solutions
- V. Pumping calculations
 - A. Static head
 - B. Friction and head loss
 - C. Total dynamic head
 - D. Brake and motor horsepower
- VI. Collection calculations
 - A. Average and per capita flow
 - B. Flow composition and velocity
 - C. Wet well capacity and pumping rate
 - D. Grit chamber and sand trap flow velocity and detention times
 - E. Industrial discharge equivalent population
- VII. Primary treatment calculations
 - A. Chlorination loading
 - B. Biological Oxygen Demand (BOD)
 - C. Suspended Solids (SS) and Total Dissolved Solids (TDS)
 - D. Clarifier volume, surface loading, detention times, efficiency
 - E. Weir overflow rate
- VIII. Treatment pond calculations
 - A. Volume and evaporation rates
 - B. Hydraulic and organic loading
- IX. Filter calculations
 - A. Capacity, loading, and efficiencies
 - B. Recirculation ratio
- X. Activated sludge calculations
 - A. Food/micro-organism loading ratio
 - B. Mean cell residence time
 - C. Waste and return pumping rates
 - D. Aerator air flow
 - E. Volume and volume index
 - F. Sludge thickening rate
 - G. Digester seeding, loading, and detention time
- XI. Solids calculations
 - A. Centrifuge efficiency
 - B. Belt press efficiency
 - C. Volatile solids reduction
 - D. Volatile acidity/alkalinity ratio
 - E. Dissolved air flotation
 - F. Solids mass balance and location

XII. Effluent treatment calculations

- A. Concentration-Time (CT)
- B. Chlorine dosage, demand, and residual
- C. Hypochlorite
- D. Dechlorination
- E. Ultraviolet (UV) and ozone
- F. Log removal and disinfection efficiency

Assignment:

- 1. In-class exercises (8-10)
- 2. Problem solving assignments (10-14)
- 3. Quizzes and/or Midterms (2-10)
- 4. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

In-class exercises and homework assignments

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Quizzes, midterms, and final (multiple choice, short answer, true-false and problem solving)

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance and participation in class activities

Representative Textbooks and Materials:

Math Text for Water and Wastewater Technicians. 3rd ed. Wright, Grover. Wright's Training. 1997 (classic)

Writing 0 - 0%

Problem solving 40 - 60%

Skill Demonstrations 0 - 0%

> Exams 40 - 60%

Other Category	
0 - 10%	

Applied Math for Wastewater. Price, Joanne Kilpatrick. First CRC Press. 1991 (classic) Applied Math for Wastewater Workbook. Price, Joanne Kilpatrick. First CRC Press. 1991 (classic) Instructor prepared materials