MATH 15 Course Outline as of Fall 2016

CATALOG INFORMATION

Dept and Nbr: MATH 15 Title: ELEMENTARY STATISTICS Full Title: Elementary Statistics Last Reviewed: 1/9/2024

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	4.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 140.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Exploration of concepts in statistics, descriptive statistics, probability theory (including but not limited to the uniform, binomial, Poisson, normal, chi-square and t distributions), Central Limit Theorem, estimation of population parameters from a sample, hypothesis testing (including parametric and nonparametric methods), correlation and linear regression, introduction to analysis of variance, computer simulations.

Prerequisites/Corequisites:

Course Completion of MATH 154 or Course Completion of MATH 155 or higher

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Exploration of concepts in statistics, descriptive statistics, probability theory, Central Limit Theorem, estimation of population parameters from a sample, hypothesis testing, correlation and linear regression, introduction to analysis of variance, computer simulations. (Grade or P/NP) Prerequisites/Corequisites: Course Completion of MATH 154 or Course Completion of MATH 155 or higher Recommended: Limits on Enrollment: Transfer Credit: CSU;UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication Thinking	n and Analytical	Effective: Fall 1989	Inactive:
CSU GE:	MC Transfer Area B4	Math Compete	2	Fall 1981 Effective: Fall 1990	Inactive:
IGETC:	Transfer Area 2A	Mathematical Quantitative Re	1	Effective: Fall 1993	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 1989	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1989	Inactive:	
CID: CID Descriptor:MATH 110 SRJC Equivalent Course(s):		Introduction to Statistics MATH15 OR PSYCH9			

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

- 1. Create and use graphic displays of data and frequency distributions.
- 2. Identify the standard methods of obtaining data and identify advantages and disadvantages of each method.
- 3. Distinguish among different scales of measurement and their implications.
- 4. Define mean, median, mode, percentiles, variability and standard deviation, and compute each for sets of data.
- 5. Use laws of probability and Bayes' formula.
- 6. Define and apply combinations, permutations, sample space, and probability distributions, including calculation of the mean and variance of a discrete distribution and calculation of probabilities using normal and t distributions.
- 7. Distinguish the difference between sample and population distributions and apply the Central Limit Theorem to calculate sampling distributions of means, proportions and standard error.
- 8. Compute and interpret confidence intervals and required sample size.
- 9. Identify the basic concept of hypothesis testing including Type I and II errors.
- 10. Select the appropriate technique for testing a hypothesis and interpret the result.

- 11. Perform hypothesis testing for mean, proportion and variance.
- 12. Determine and interpret levels of statistical significance including p-values.
- 13. Implement goodness of fit test, the test for independence.
- 14. Use linear regression and Analysis of Variance, ANOVA, for estimation and inference, and interpret the associated statistics.
- 15. Use statistics software package for evaluation of data and inference.
- 16. Process data sets from disciplines including business, social sciences, psychology, life science, health science and education.

Topics and Scope:

- I. Statistical Description
 - A. Graphic display of data
 - B. Levels of measurement
 - C. Frequency distributions
 - D. Mean
 - E. Median
 - F. Mode
 - G. Percentiles
 - H. Variability
 - I. Standard deviation
 - J. Chebyshev's Theorem
- II. Counting and Probability Distributions
 - A. Laws of probability and counting
 - B. Combinations
 - C. Permutations
 - D. Random variables and expected value
 - E. Probability distributions (including, but not limited to, the following)
 - 1. Uniform
 - 2. Binomial
 - 3. Poisson
 - 4. Normal
 - 5. Chi-squared
 - 6. Student t
- III. Statistical Inference
 - A. Sampling methods
 - B. Sampling distributions
 - 1. Means
 - 2. Proportions
 - 3. Differences of means
 - C. Standard error
 - D. Central Limit Theorem
 - E. Confidence intervals
 - F. Hypothesis testing (parametric and extended nonparametric)
 - 1. Means, including t-tests for one and two populations
 - 2. Proportion
 - 3. Differences of means
 - 4. Variances
 - 5. Chi Square tests: Goodness of Fit and Independence
 - G. Required sample size
 - H. Correlation and linear regression

- I. Introduction to analysis of variance
- IV. Use of computer and electronic calculator
 - A. Evaluation of data
 - B. Methods of simulations
- V. Use data sets from disciplines including business, social science, psychology, life science, health science and education.

Assignment:

- 1. Daily reading outside of class (0-50 pages per week)
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor (8-16)
- 3. Exams (2-4) and a final exam; quizzes (0-20)
- 4. Projects, e.g. computer activities, surveys or data collection and analysis (0-2)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Problem sets

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Objective exams, quizzes, final

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:

Elementary Statistics: Picturing the World (6th ed.). Larson, Ron and Farber, Betsy. Pearson: 2015.

Elementary Statistics, A Step by Step Approach (9th ed.). Bluman, Allan. McGraw-Hill: 2015.

Problem solving 10 - 30% Skill Demonstrations 0 - 0% Exams

70 - 80%

Writing

0 - 0%

Other Category 0 - 10% Modern Elementary Statistics (12th ed.). Freund, John. Pearson: 2007 (current edition) Elementary Statistics (12th ed.). Triola, Mario F. Pearson: 2014.