SURV 60 Course Outline as of Fall 2015

CATALOG INFORMATION

Dept and Nbr: SURV 60 Title: INTRO PLANE SURVEYING Full Title: Introduction to Plane Surveying Last Reviewed: 1/25/2021

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	8	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Introduction to the principles and practice of plane surveying, including measurements for distance, direction, elevation and position, topographic and planimetric mapping, use and care of surveying equipment.

Prerequisites/Corequisites:

Recommended Preparation:

Course Completion or Concurrent Enrollment in APTECH 90A, APTECH 191 or MATH 155

Limits on Enrollment:

Schedule of Classes Information:

Description: Introduction to the principles and practice of plane surveying, including measurements for distance, direction, elevation and position, topographic and planimetric mapping, use and care of surveying equipment. (Grade Only) Prerequisites/Corequisites: Recommended: Course Completion or Concurrent Enrollment in APTECH 90A, APTECH 191 or MATH 155

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	l		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	:Transferable	Effective:	Fall 2015	Inactive:	
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of this course, the student will be able to:

- 1. Define the different types of land surveying and their uses.
- 2. Summarize the proper procedures and use of surveying equipment used in this course.
- 3. Prepare proper surveying notes and information.

4. Perform surveying computations involving angles, directions, distances, areas, volumes, and vertical and horizontal positions.

- 5. Calculate horizontal measurements by manual and electronic methods.
- 6. Determine the elevation difference between points using multiple survey leveling methods.
- 7. Lay out, measure, analyze and adjust level runs, field traverses and topographic side shots.

8. Compute direction of a line from field data and record data using magnetic and geodetic information.

- 9. Compute the relative position of points by traversing.
- 10. Calculate basic curve data and layout basic horizontal curves.
- 11. Prepare a topographic map from surveying data and information.

12. Identify the characteristics of and summarize basic procedures used in the Public Land Survey System.

Topics and Scope:

Lecture and Laboratory

- I. Introduction to Plane Surveying
 - A. Procedures
 - B. Equipment
 - C. Units of Measure
- II. Field Notes: Preparation and Use of Field Notes
 - A. Purpose and Preparation
 - B. Proper Composition in the Field
 - C. Office Use of Field Notes

- III. Land Surveying and Measurement Error
 - A. Basic Error Specification and Determination
 - B. Basic Error Management and Correction
- IV. Leveling
 - A. Theory
 - B. Equipment
 - C. Vertical Datums
 - D. Process
 - E. Computations
- V. Distance Measurement
 - A: Theory
 - B. Process
 - C. Horizontal Datums
 - 1. NAD 27 (North American Datum 1927)
 - 2. NAD 83 (North American Datum 1983)
 - D. Methods
 - 1. Taping
 - 2. Electronic
- VI. Horizontal Curves
 - A. Alignment geometry and basic calculations
 - B. Defining and calculating basic curve elements
 - C. Layout
- VII. Vertical Curves
 - A. Alignment geometry and basic calculations
 - B. Defining and calculating vertical curve elements
 - C. Layout
- VIII. Electronic Instruments and Electronic Measurements
 - A. History of survey measurement equipment
 - B. Use and care of electronic measurement equipment
- IX. Traversing
 - A. Procedures
 - B. Computations and Adjustments
 - C. Computing Area
 - D. Field notes
- X. Mapping Surveys
 - A. Types and Methods
 - B. Mapping and Simple Plat Preparation
- XI. Introduction to Public Lands Survey System (PLSS)

Assignment:

- 1. Textbook reading per week (1-2 chapters per week)
- 2. Homework problem sets (10-20)
- 3. Weekly field exercises, performance evaluations, and reports
- 4. Exams (3-5)
- 5. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments and skill demonstrations are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problem sets, Field exercises and reports

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Field exercises, Performance evaluations

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion, Computational

Other: Includes any assessment tools that do not logically fit into the above categories.

Class Participation

Representative Textbooks and Materials:

Elementary Surveying: An Introduction to Geomatics, 14th ed. Wolf/Ghilani, Prentice-Hall, 2014

Instructor prepared materials

	Writing 0 - 0%
1	
	Problem solving 15 - 25%
	Skill Demonstrations 30 - 40%
	Exams 25 - 35%
	Other Category 0 - 10%