PHYS 41 Course Outline as of Fall 2015

CATALOG INFORMATION

Dept and Nbr: PHYS 41 Title: WAVES, OPTICS, THERMO

Full Title: Waves, Optics and Thermodynamics for Scientists & Engineers

Last Reviewed: 1/23/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 210.00

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: PHYS 4B

Catalog Description:

This is a course intended for science and engineering students and will include oscillations, waves, sound, heat, kinetic theory, thermodynamics, geometrical optics, interference, diffraction and polarization of light.

Prerequisites/Corequisites:

Course Completion of PHYS 40

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: This is a course intended for science and engineering students and will include oscillations, waves, sound, heat, kinetic theory, thermodynamics, geometrical optics,

interference, diffraction and polarization of light. (Grade Only)

Prerequisites/Corequisites: Course Completion of PHYS 40

Recommended:

Limits on Enrollment:

Transfer Credit: CSU;UC.

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

C Natural Sciences Spring 1983

CSU GE: Transfer Area Effective: Inactive:

B1 Physical Science Spring 1983

B3 Laboratory Activity

IGETC: Transfer Area Effective: Inactive:

5A Physical Sciences Spring 1983

5C Fulfills Lab Requirement

CSU Transfer: Transferable Effective: Spring 1983 Inactive:

UC Transfer: Transferable Effective: Spring 1983 Inactive:

CID:

CID Descriptor:PHYS 200S Calculus-Based Physics for Scientists and Engineers: ABC SRJC Equivalent Course(s): PHYS40 AND PHYS41 AND PHYS42 AND PHYS43

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

- 1. Describe waves and solve problems relating to their properties and propagation in various media.
- 2. Be able to convert between temperature scales, solve problems related to coefficient of expansion, thermal equilibrium and heat transfer.
- 3. Use the three laws of thermodynamics and the kinetic theory of gasses to solve problems related to ideal gasses and various heat engines.
- 4. Explain propagation of light in media including reflection, refraction and dispersion.
- 5. Explain image formation and draw the ray diagrams for various optical devices including lenses, mirrors, microscopes and telescopes.
- 6. Explain the formation of interference patterns of light from single slit, double slit, diffraction grating, and thin films.
- 7. Describe polarization with filters and by reflection.

Lab Objectives:

- 1. Develop and conduct experiments that apply the scientific method and error analysis to explore principles in waves, sound, thermodynamics and optics.
- 2. Use manual and computerized data collection techniques to measure and analyze parameters related to waves, sound, thermodynamics and optics.
- 3. Plot, curve fit, and interpret data using a spreadsheet or other analysis tools.

Topics and Scope:

1. Oscillatory motion

- a. simple harmonic motion
- b. wave equations
- c. damped/forced oscillations
- 2. Wave motion
 - a. travelling wave model/equation
 - b. reflection and transmission
- 3. Sound waves
 - a. speed, frequency, power level and intensity
 - b. Doppler effect
- 4. Superposition and standing waves
 - a. equations
 - b. interference and standing waves
 - c. beats
 - d. Fourier transformation of non-sinusoidal waves
- 5. Temperature and Zeroth law of thermodynamics
 - a. temperature scales
 - b. thermal expansion
 - c. ideal gas
- 6. First law of thermodynamics
 - a. heat and thermal energy
 - b. specific heat and latent heat
 - c. work-heat relationship
 - d. thermal conduction methods
- 7. The kinetic theory of gasses
 - a. molecular and statistical models
 - b. molar specific heat of gas
 - c. adiabatic process
 - d. equipartition theory
- 8. Second law of thermodynamics
 - a. heat engines
 - b. entropy
- 9. Light and optics
 - a. nature of light
 - b. ray, diagram, reflection and refraction of light
 - c. total internal reflection
- 10. Image formation
 - a. mirrors and lenses
 - b. aberrations
 - c. eye, camera, microscope and telescopes
- 11. Interference of light waves
 - a. single and double slits
 - b. thin film interference
 - c. interferometers
- 12. Diffraction
 - a. narrow single slit, double slits and diffraction gratings
 - b. X-ray diffraction
 - c. polarization of light

Assignment:

- 1. Homework problem sets (10-30)
- 2. Quizzes (5-15)

- 3. Laboratory experiments (12-16)
- 4. Mid-term exams (2-4)
- 5. Final exam
- 6. Written lab reports (12-16)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written lab reports

Writing 5 - 10%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, lab experiments

Problem solving 15 - 35%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Objective examinations (multiple choice, etc.) that include essay questions, Quizzes, Mid-terms, Final exam

Exams 50 - 70%

Other: Includes any assessment tools that do not logically fit into the above categories.

Class participation

Other Category 0 - 5%

Representative Textbooks and Materials:

Physics for Scientists and Engineers by Serway and Jewett, 9th edition, Thomson, 2013 Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, 3rd edition. Randell D. Knight. Pearson, 2013