DET 182B Course Outline as of Fall 2014

CATALOG INFORMATION

Dept and Nbr: DET 182B Title: DIESEL FUEL SYSTEMS

Full Title: Diesel Engine Fuel Systems

Last Reviewed: 1/22/2018

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.50	17.5	Lecture Scheduled	43.75
Minimum	3.00	Lab Scheduled	2.00	8	Lab Scheduled	35.00
		Contact DHR	0		Contact DHR	0
		Contact Total	4.50		Contact Total	78.75
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 87.50 Total Student Learning Hours: 166.25

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: DET 82B

Catalog Description:

An in-depth study of heavy duty diesel engine fuel and electronic control systems. Students perform service, maintenance and diagnosis of diesel engine fuel systems.

Prerequisites/Corequisites:

Course Completion of DET 182A

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: An in-depth study of heavy duty diesel engine fuel and electronic control systems. Students perform service, maintenance and diagnosis of diesel engine fuel systems. (Grade

Only)

Prerequisites/Corequisites: Course Completion of DET 182A

Recommended: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Effective: Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

- 1. Carry out diagnostic procedures to deduce necessary repairs and perform tune-up procedures to correct engine performance.
- 2. Identify and evaluate electronic systems components.
- 3. Perform diagnosis and repairs on an electronic control system.
- 4. Identify different types of engine fuel systems.
- 5. Use engine tune-up and diagnostic tools and instruments effectively.
- 6. Discuss and apply personal, shop, and environmental safety procedures.

Topics and Scope:

- 1. Engine inspection and operation
 - a. Pre-operation inspection
- b. Safety checks
- c. Engine start-up
- d. Engine operation
- e. Fuel system
- 2. Tune-up procedures
 - a. Four-stroke cycle
 - b. Standard tune-up procedures
 - c. Electronic engine tune-up procedures
 - d. Electronic component testing
- 3. Diagnostic procedures
 - a. Mechanical fuel system diagnostics
 - b. Electronic fuel system diagnostics
 - c. General engine diagnostics
- 4. Engine accessories
 - a. Turbocharging and supercharging
 - b. Engine brakes and retarders

- c. Heaters and coolers
- d. Adaptive housings and devices
- 5. Safety
 - a. Personal
 - b. Shop
 - c. Environmental

Assignment:

- 1. Read 40 to 60 pages a week
- 2. Perform engine diagnostic tests
- 3. Evaluate engine performance and correct deficiencies
- 4. Document engine performance repairs with written lab report
- 5. 3 to 5 exams

lab report

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-

Engine performance evaluation

computational problem solving skills.

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Engine diagnostic tests

Exams: All forms of formal testing, other than skill performance exams.

2 to 5 exams

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Skill Demonstrations

10 - 30%

Problem solving

10 - 30%

Writing

0 - 30%

Exams 20 - 50%

Other Category 0 - 0%

Representative Textbooks and Materials:

Diesel Technology: Fundamentals, Service, Repair. Norman, Corinchock, Goodheart-Wilcox Pub. 7th Ed., 2007. (classic)