MATH 25 Course Outline as of Fall 2013

CATALOG INFORMATION

Dept and Nbr: MATH 25 Full Title: Precalculus Algebra Last Reviewed: 2/8/2021 Title: PRECALCULUS ALGEBRA

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Topics from college algebra, including analytic geometry, functions and their graphs, complex numbers, sequences and series.

Prerequisites/Corequisites:

Completion of MATH 154 or MATH 155 or higher; or Qualifying Placement from Math Assessment. See Student Success & Assessment Services (assessment.santarosa.edu) for more information about the assessment process.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Topics from college algebra, including analytic geometry, functions and their graphs, complex numbers, sequences and series. (Grade Only) Prerequisites/Corequisites: Completion of MATH 154 or MATH 155 or higher; or Qualifying Placement from Math Assessment. See Student Success & Assessment Services (assessment.santarosa.edu) for more information about the assessment process. Recommended: Limits on Enrollment: Transfer Credit: CSU;UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication Thinking	n and Analytical	Effective: Fall 2006	Inactive:
CSU GE:	MC Transfer Area B4	Math Competer	•	Fall 1981 Effective: Fall 2006	Inactive:
IGETC:	Transfer Area 2A	Mathematical Quantitative Re	1	Effective: Fall 2006	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 2006	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 2006	Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

- 1. Perform advanced operations with functions (using symbolic, graphical, and numerical representations) and apply knowledge to modeling problems.
- 2. Define and graph inverse functions.
- 3. Define and apply characteristics of functions (including intercepts, turning points, intervals of positive/negative, increasing/decreasing value, transformations, symmetry) in graphing polynomial, rational, absolute value, radical, exponential, and logarithmic functions.
- 4. Solve selected algebraic equations over the complex numbers.
- 5. Solve algebraic equations graphically and symbolically, including absolute value, polynomial, radical, rational, logarithmic, and exponential.
- 6. Graph circles, functions, and parametric equations.
- 7. Graph asymptotes and recognize a hole in the graph.
- 8. Perform operations with complex numbers.

Topics and Scope:

- I. Equations and Inequalities
 - A. Graphical and algebraic solutions to radical and quadratic-form equations, and to absolute value equations and inequalities
 - B. Solutions to systems of nonlinear equations
- II. Complex Numbers
 - A. Definition
 - B. Operations with complex numbers
- III. Analysis of Functions and Their Graphs
 - A. Definition
 - B. Notation
 - C. Domain
 - D. Range
 - E. Operations, including difference quotients and composition of functions
 - F. Catalog of functions
 - G. Symmetry
 - H. Even and odd functions
 - I. Shifts
 - J. Scaling
 - K. Reflections of graphs, along with modeling
- IV. Polynomial and Rational Functions
 - A. Linear, quadratic, polynomial functions of higher degree and their graphs
 - B. Long division of polynomials
 - C. Graphs of rational functions
 - D. Asymptotes and holes
 - E. Introduction to limit concepts and notation
 - F. Solutions of polynomial and rational equations and inequalities, using real numbers and complex numbers as appropriate
- V. Inverse, Exponential and Logarithmic Functions
 - A. Definitions
 - B. Properties
 - C. Graphs
 - D. Equations
 - E. Applications
- VI. Sequences and Series
 - A. Finite and infinite geometric sequences and series
 - B. Summation of powers of integers
- VII. Topics from Analytic Geometry
 - A. Midpoint and distance formulas
 - B. Circles
 - C. Parametric equations

Assignment:

- 1. Daily reading outside of class (20-50 pages per week).
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor (1-6 per week).
- 3. Quizzes (0-4 per week).
- 4. Exams (3-8 per term).
- 5. Projects (for example, computer explorations or modeling activities, 0-10 per term).

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice and free response exams; quizzes

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:

College Algebra (6th ed). by Stewart, Redlin and Watson; 2012

College Algebra Enhanced with Graphing Utilities (5th ed.). Sullivan, Michael and Sullivan III, Michael. Prentice Hall: 2009.

Writing 0 - 0%
Problem solving 5 - 20%
Skill Demonstrations 0 - 0%
r
Exams 70 - 95%
r
Other Category 0 - 10%