ELEC 154 Course Outline as of Fall 2013

CATALOG INFORMATION

Dept and Nbr: ELEC 154 Title: ROTATING MACHINERY

Full Title: Rotating Machinery Last Reviewed: 4/22/2019

Units		Course Hours per Wee	k]	Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.50	17.5	Lecture Scheduled	43.75
Minimum	3.00	Lab Scheduled	1.50	8	Lab Scheduled	26.25
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 87.50 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Fundamentals of three-phase and single-phase rotating machinery. Includes the operation and maintenance of Direct Current (DC) and Alternating Current (AC) motors, generators, and controllers. (Lecture/Lab)

Prerequisites/Corequisites:

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Fundamentals of three-phase and single-phase rotating machinery. Includes the operation and maintenance of Direct Current (DC) and Alternating Current (AC) motors, generators, and controllers. (Lecture/Lab) (Grade or P/NP)

Prerequisites/Corequisites:

Recommended:

Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Effective: Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Operate and maintain AC and DC motors and controllers.
- 2. Operate and maintain AC and DC generators.
- 3. Install and maintain motor controllers.
- 4. Implement safety and tag-out procedures.

Objectives:

Upon completion of the course the student will be able to:

- 1. Analyze the operating principles of AC and DC motors.
- 2. Apply proper safety procedures for working around motors and rotating machinery.
- 3. Apply proper tag-out procedures when working on electrical equipment.
- 4. Diagnose and repair AC and DC motor starters and controllers.
- 5. Diagnose and repair AC and DC generator controllers.
- 6. Evaluate and repair defective rectifiers in alternators.
- 7. Interpret name plate information found on motors and generators.
- 8. Test for the correct installation of rotating machinery, including proper alignment and belt tensions.
- 9. Design predictive and ordinary maintenance routines using common rotating machinery test equipment.

Topics and Scope:

- I. Safety in the Workplace
- II. Magnetism & Electromagnetism
- III. Single- and Three-Phase AC Generators (Alternators)
 - A. slip rings and brushes
 - B. rotating armature, stationary fields
 - C. rotating fields, stationary armature

- D. self-excitation
- E. external excitation
- F. rectifiers

IV. Basic Motor Operating Principles

- A. attraction-repulsion
- B. effect of generating current to line current
- C. starting current
- D. running current
- E. effect of load on the motor

V. DC Motors

- A. series motors
- B. shunt motors
- C. compound motors

VI. Series-Wound AC Motors

- A. characteristics
- B. compare to DC series motors

VII. AC Induction Motors

- A. rotating magnetic fields
- B. single-phase rotating fields
- C. three-phase rotating fields
- D. eddy currents
- E. stators
- F. rotors
- G. squirrel cage rotors

VIII. Stepper Motors

- IX. Servo Motors
- X. Motor Controllers AC and DC Tachometers

XI. Predictive Maintenance Procedures

- A. vibration analysis
- B. EMI evaluations and analysis of rotating machinery
- C. megohmeters and their uses
- D. belt slippage and adjustments
- E. alignment and installation procedures of rotating machinery
- XII. Rotating machinery name plate information and usage in maintenance and installation
- XIII. Motor Safety and 440 V three Phase Circuits
- XIV. Very large motor precautions (10 Hp and greater)

XV. Laboratory Exercises

- A. lab safety procedures
- B. using test equipment for analysis
- C. magnetic and electromagnetic properties
- D. DC motors
- E. generators
- F. AC motors
- G. motor controllers
- H. maintenance procedures

Assignment:

- 1. weekly reading assignments (10-20 pages)
- 2. lab assignments (5-10)
- 3. homework assignments (10-15) including writing a maintenance or safety procedure
- 4. quizzes (2-5)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Maintenance or safety procedure

Writing 10 - 30%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Problem solving 20 - 50%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Lab Assignments

Skill Demonstrations 10 - 30%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion

Exams 20 - 50%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

Hughes, Austin. Electric Motors and Drives - Fundamentals, Types & Applications, 4th ed., Newnes, 2013.

Chapman, Stephen J. Electric Machinery Fundamentals. McGraw-Hill. 2011.