CS 110A Course Outline as of Fall 2013

CATALOG INFORMATION

Dept and Nbr: CS 110A Title: PROGRAMMING CONCEPTS Full Title: Concepts for Beginning Programmers Last Reviewed: 9/10/2018

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	1.50	Lecture Scheduled	1.50	17.5	Lecture Scheduled	26.25
Minimum	1.50	Lab Scheduled	0	4	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	1.50		Contact Total	26.25
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 52.50

Total Student Learning Hours: 78.75

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	CIS 110A

Catalog Description:

A brief introduction to computer programming concepts. Topics include algorithms, decision structures, repetition structures, and subprograms.

Prerequisites/Corequisites:

Recommended Preparation: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: A brief introduction to computer programming concepts. Topics include algorithms, decision structures, repetition structures, and subprograms. (Grade or P/NP) Prerequisites/Corequisites: Recommended: Eligibility for ENGL 100 or ESL 100 Limits on Enrollment: Transfer Credit: Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	Effective:	Inactive:
CSU Transfer	: Effective:	Inactive:	
UC Transfer:	Effective:	Inactive:	

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of this course, students will be able to:

1. Create correct algorithms.

2. Design and implement computer programs that employ conditional and repetitive control structures.

- 3. Design and implement computer programs that employ subprograms.
- 4. Classify program errors.
- 5. Design and implement computer programs using stepwise refinement.
- 6. Design and implement computer programs that employ simple recursion.

Topics and Scope:

- 1. Primitive Instructions
- 2. Basic Program Structure
- 3. Creating and Calling Subprograms
 - a. The correctness of subprograms
 - b. Stepwise refinement
 - c. Program design techniques
 - d. Advantages of using subprograms
 - e. Writing understandable programs
- 4. Conditional Execution
 - a. If statements
 - b. If/else statements
 - c. Nested if statements
 - d. Complex conditions
 - e. When to use conditional execution
 - f. Transformations for simplifying if statements
 - g. The dangling else
- 5. Repetitive Execution
 - a. While statements, do-while statements, and for statements
 - b. Errors to avoid with repetitive execution
 - c. Nested while statements

- d. Reasoning about while statements
- e. When to use repetitive execution

Assignment:

- 1. Read approximately 30 pages per week.
- 2. 2-8 computer programming assignments.
- 3. Test and debug computer programs.
- 4. 2-6 objective quizzes and/or examinations.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Computer programming assignments, including testing and debugging computer programs

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion, Computer programming questions

Other: Includes any assessment tools that do not logically fit into the above categories.

None

XX7	
Writing	
0 - 0%	
0-0/0	

Problem solving 30 - 70%	

Skill Demonstrations
0 - 0%

Exams 30 - 70%

Other Category 0 - 0%

Representative Textbooks and Materials:

Absolute C++ (5th). Savitch, Walter. Addison-Wesley: 2012

Python Programming: An Introduction to Computer Science (2nd). Zelle, John. Franklin, Beedle & Associates Inc: 2010