WTR 102 Course Outline as of Fall 2012

CATALOG INFORMATION

Dept and Nbr: WTR 102 Title: MATH METHODS WATER TREAT Full Title: Mathematical Methods for Water Treatment Technology Last Reviewed: 1/26/2015

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	1.50	Lecture Scheduled	1.50	17.5	Lecture Scheduled	26.25
Minimum	1.50	Lab Scheduled	0	8	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	1.50		Contact Total	26.25
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 52.50

Total Student Learning Hours: 78.75

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	ENVT 102

Catalog Description:

Mathematical methods for the fields of water treatment technology, water distribution technology, and waste water treatment technology. Prepares students for certification examinations.

Prerequisites/Corequisites:

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Mathematical methods for the fields of water treatment technology, water distribution technology and waste water treatment technology. Prepares students for certification examinations. (Grade Only) Prerequisites/Corequisites: Recommended: Limits on Enrollment:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	Effective:	Inactive:
CSU Transfer	: Effective:	Inactive:	
UC Transfer:	Effective:	Inactive:	

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

- 1. Distinguish between measured and counted quantities.
- 2. Distinguish the number of significant figures in measured quantities.
- 3. Calculate median and average values.
- 4. Use a pocket calculator to perform water measurement calculations.
- 5. Calculate areas of triangles, rectangles, and circles.
- 6. Calculate volumes of cylindrical and rectangular tanks.
- 7. Convert between common units of time, mass, length, area, volume, and temperature.
- 8. Calculate concentrations, flows, pressures, and velocities using ratios and percentages.
- 9. Calculate percent composition from formula and molecular weights.
- 10. Calculate electricity costs from load and power rates.

Topics and Scope:

- I. Numbers quantifying an identified commodity
 - A. Units identifying the commodity
 - B. Integers quantifying counted commodities
 - C. Measured commodities may require decimal fractions

II. Significant figures

- A. The imprecision of measurement
- B. Applications to computed values
- C. The decimal point
- D. Non-zero digits
- E. Zero
 - 1. between non-zero digits
 - 2. before non-zero digits
 - 3. after non-zero digits
- III. Basic Math Operations & Rules

- A. Addition and Subtraction
- B. Multiplication and Division
- C. Exponents
- D. Scientific Notation
- E. Operations with Fractions
- IV. Useful pocket calculators
 - A. Verify ability to multiply and divide
 - B. Very large numbers
 - C. Very small numbers
- V. Median values
- VI. Mean values Determining a 7-day average
- VII. Computation of areas
 - A. Area of a rectangle
 - B. Area of a triangle
 - C. Area of a circle
- VIII. Computation of volumes
 - A. The product of an area and a length
 - B. Volume of a box
 - C. Volume of a cylinder
- IX. Units
 - A. Length
 - B. Area
 - C. Volume
 - D. Time
 - E. Mass
 - F. Temperature
- X. Dimensional analysis of rates
 - A. "Per" implies division
 - B. Speed = $\hat{l}ength / time$
 - C. Pressure = force / area
 - D. Flow = volume / time
 - E. Concentration = mass / volume
 - F. Unit Price = value / quantity
- XI. Express conversion factors as fractions
 - A. Multiplying a number by 1 does not change its value
 - B. Any number divided by itself equals 1
 - C. A conversion factor expressed as a fraction equals 1
 - D. Multiplying a value by a fractional conversion factor
- XII. Applying the fractional conversion factor process to
 - A. Percent computations
 - B. Ratios
 - C. Fahrenheit Celsius temperature conversions
- XIII. Simultaneous application of several conversion factors
 - A. Dimensional analysis
 - B. Analogous application of
 - 1. rates
 - 2. ratios
 - 3. concentrations
- XIV. Using molecular weights to calculate percent composition
 - A. Identify the atomic weight of common elements
 - B. Determining the ratio of atoms in chemical formulae
 - C. Applying the fractional percent conversion

Assignment:

Reading, approximately 5-10 pages per week, based on eight weeks.
Problem sets such as flow rates, surface area, volume calculations, other calculations pertaining to water treatment and distribution.
Quizzes (1-3); final exam.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problem sets such as flow rates, surface area, volume calculations, other calculations pertaining to water treatment and distribution.

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative Textbooks and Materials:

Instructor prepared materials.

	Writing 0 - 0%
L	
ſ	Problem solving
	40 - 60%
L	
	Skill Demonstrations 0 - 0%

Exams	
40 - 60%	

Other Category	
0 - 0%	