ELEC 53.14 Course Outline as of Spring 2012

CATALOG INFORMATION

Dept and Nbr: ELEC 53.14 Title: BASIC ROTATING MACHINERY

Full Title: Basic Rotating Machinery for Maintenance Technicians

Last Reviewed: 1/31/2005

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	2.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	2.00	Lab Scheduled	0	8	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	2.00		Contact Total	35.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 105.00

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: ELEC299.43

Catalog Description:

Basics of rotating machinery including both DC and AC motors and generators. Includes three phase and single phase rotating machinery.

Prerequisites/Corequisites:

Recommended Preparation:

Course Completion of ELEC 53.13 (or ELEC299.42)

Limits on Enrollment:

Schedule of Classes Information:

Description: Basics of rotating machinery including both DC and AC motors and generators.

Includes three phase and single phase rotating machinery. (Grade or P/NP)

Prerequisites/Corequisites:

Recommended: Course Completion of ELEC 53.13 (or ELEC299.42)

Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Effective: **Inactive:** Area CSU GE: **Transfer Area** Effective: **Inactive:**

IGETC: Transfer Area Effective: **Inactive:**

CSU Transfer: Effective: **Inactive:**

UC Transfer: Effective: **Inactive:**

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course the student will be able to:

- 1. Analyze the operating principles of several different types of AC and DC motors.
- 2. Compile proper safety procedures for working around motors and rotating machinery.
- 3. Originate and apply proper tag-out procedures when working on electrical equipment.
- 4. Evaluate and repair commutator and slip ring problems.
- 5. Evaluate and repair defective rectifiers in alternators.
- 6. Identify and evaluate various motor starting problems.
- 7. Describe the operation and principles of squirrel cage rotators in induction motors.

Topics and Scope:

- 1. Safety
- 2. Magnetism
 - a. poles
 - b. fields
 - c. repulsion
 - d. attraction
 - e. permeability
 - f. residual magnetism
- 3. Electromagnetism
 - a. flux density
 - b. field strengthc. hysterisis

 - d. effect of current increase and decrease
- 4. Counter current generation back EMF, Lenz's Law connection
- 5. Generators, basics of generating electric current, effects of magnetic field strength, speed of magnetic field cutting with a conductor,

number of wires cut by magnetic fields 6. AC generation, (alternators) single phase machines a. slip rings-brushes

- b. rotating armature, stationary fields
- c. rotating fields, stationary armature
- d. self excitation
- e. external excitation
- 7. AC generation, (alternators) poly phase machines
 - a. rotating armature, stationary fields
 - b. rotating fields, stationary armature
 - c. self excitation
 - d. external excitation
- 8. Alternators with DC outputs
 - a. rectification
 - b. single phase
 - c. poly phase
- 9. Types of machines
 - 1. series wound
 - a. adding fields
 - b. opposing fields
 - 2. shunt wound
 - 3. compound wound
 - a. series-parallel
 - b. parallel-series
- 10. DC Motors
 - a. Series motors characteristics
 - b. Shunt motor characteristics
 - c. Compound motor characteristics
- 11. AC Motors, series (universal motors)
 - a. characteristics
 - b. comparison to DC series motors
- 12. AC Motors, induction
 - a. Rotating magnetic fields-generation of
 - b. Single phase rotating fields-generation of
 - c. Poly-phase rotating fields-generation of
 - d. Transformers and transformer action
 - e. Eddy currents
 - f. Stators
 - g. Rotors
 - h. Squirrel cage rotors
 - i. Starting current
 - j. Stall current
 - k. Run current
- 13. Starting Single Phase Motors
 - a. Synchronous motors
 - b. Shaded pole motors
 - c. Capacitor start
 - d. Resistance start
- 14. Motor Controllers
 - a. DC
 - b. AC

Assignment:

Application of concepts and problem solving in the following areas:

- 1. Compare, in writing, the operating principles of AC and DC motors.
- 2. Demonstrate and utilize proper safety techniques when working with motors.
- 3. Inspect and repair commutators, slip rings and rectifiers.
- 4. Assess the operation of squirrel cage rotators use in induction motors.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written homework

Writing 5 - 10%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Problem solving 20 - 50%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Class performances, Performance exams

Skill Demonstrations 20 - 50%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion

Exams 10 - 30%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

Electric Motors and Drives - Fundamentals, Types & Applications, 2nd ed. Hughes, Austin. Publisher: Butterworth-Heineman, 1993. Rotating Electrical Machines and Power Systems. Patrick, Dale R. and Fardo, Stephen W. Prentice-Hall, 2000.