AUTO 190 Course Outline as of Fall 2011

CATALOG INFORMATION

Dept and Nbr: AUTO 190 Title: ALT FUELS AND SYSTEMS Full Title: Alternative Fuels and Fuel Systems Last Reviewed: 2/13/2006

Units		Course Hours per Wee	ek i	Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	4.00	17	Lecture Scheduled	68.00
Minimum	3.00	Lab Scheduled	6.00	8	Lab Scheduled	102.00
		Contact DHR	0		Contact DHR	0
		Contact Total	10.00		Contact Total	170.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 136.00

Total Student Learning Hours: 306.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

This course will provide an introduction to non-traditional fuels and conversion of internal combustion fuel systems to natural gas, bio-fuels, and other alternative fuel systems.

Prerequisites/Corequisites:

Recommended Preparation:

Course Completion of DET 87 (or DET 64) and Course Eligibility for ENGL 100 OR Course Eligibility for EMLS 100 (or ESL 100)

Limits on Enrollment:

Schedule of Classes Information:

Description: This course will provide an introduction to non-traditional fuels and conversion of internal combustion fuel systems to natural gas, bio-fuels, and other alternative fuel systems. (Grade Only) Prerequisites/Corequisites: Recommended: Course Completion of DET 87 (or DET 64) and Course Eligibility for ENGL 100 OR Course Eligibility for EMLS 100 (or ESL 100)

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	Effective:	Inactive:
CSU Transfer	: Effective:	Inactive:	
UC Transfer:	Effective:	Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course students will be able to:

- 1. Differentiate between traditional and "alternative" fuel.
- 2. Identify U.S. Department of Energy fuels classified as "alternative" to gasoline.
- 3. Discuss the benefits of alternative fuels.
- 4. Discuss clean air legislation.
- 5. Explain the origin, manufacture and use of alternative fuels.
- 6. Relate specific alternative fuels to their appropriate application.
- 7. Define fuel system and system component operations.
- 8. Explain safe procedures for fuel handling.
- 9. Employ maintenance directions related to alternative fuel system care.
- 10. Perform inspection and testing procedures for alternative fuel systems.
- 11. Assess maintenance and repair needs on specific units and complete needed repairs and maintenance.
- 12. Convert traditional fuel vehicle engines and/or components to alternative fuel engines and/or components.
- 13. Discuss and apply personal, shop, and environmental safety procedures.

Topics and Scope:

- 1. Clean fuels: An Overview
- a. traditional fuels
- b. alternative fuels
- c. clean air legislation
- 2. Fuel types, origin, manufacturing and use

- a. refined fuels
- b. bio-fuels
- c. gaseous fuels
- 3. Alternative fuel systems
 - a. fuel injection
 - b. compressed gas systems
 - c. liquefied gas systems
- d. vehicle fueling stations
- 4. Alternative Fuel Conversions
 - a. bio diesel
 - b. ethanol
 - c. SVO (straight vegetable oil)
 - d. in-wheel electrically generated hybrid
 - e. direct injected hybrids
 - f. performing alternative fuel conversions
- 5. Fuel handling safety procedures
 - a. personal
 - b. environmental
- c. regulations
- 6. Fuel and fuel system maintenance and repairs
- a. scheduled maintenance
- b. system diagnosis
- c. component repair or replacement
- d. work orders

Assignment:

Representative assignments:

1. Readings (approximately 5-10 pages per week) and discussion of traditional and alternative fuels.

2. Field trips (1-4) to local alternative fuel facilities and refining facility.

3. Field notes.

4. Lab activities. Labs activities may vary from semester to semester and may include but are not limited to:

- a. Fabrication of alternative fuel processors
- b. Performing simple alternative fuel conversions
- c. Installation of pre-made alternative fuel kits
- d. Perform efficiency tests on alternative fuel systems.
- e. Maintenance and repair/replacement activities.
- 5. Lab reports.
 - a. Write analyses of efficiency tests.
 - b. Write recommendations regarding needed adjustments or repairs.
- 6. Write work orders and perform services for custom installation jobs.
- 7. Final project: research and written report (3-5 pages) on a selected

alternative fuel technology or related topic. In-class presentation.

8. Final exam.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Field notes. Final project report; work orders.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Lab reports, Fuel efficiency tests and analyses.

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Fabrication/conversions/installation/maintenance.

Exams: All forms of formal testing, other than skill performance exams.

Short answer.

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance and participation; class presentation

Representative Textbooks and Materials:

Instructor prepared materials.

Writing 10 - 20%

Problem solving 10 - 30%

Skill Demonstrations 20 - 40%

Exams 10 - 20%

Other Category 5 - 10%