APTECH 90B Course Outline as of Spring 2012

CATALOG INFORMATION

Dept and Nbr: APTECH 90B Title: QUANT REASON/APTECH

Full Title: Quantitative Reasoning in Applied Technology

Last Reviewed: 10/17/2011

Units		Course Hours per Weel	ζ.	Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	4.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 140.00 Total Student Learning Hours: 210.00

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: CET 90B

Catalog Description:

A course in quantitative reasoning which applies trigonometry principles to problems encountered in surveying, civil engineering, construction, electronics and related engineering technologies.

Prerequisites/Corequisites:

Course Completion of APTECH 90A (or CET 90A)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: A course in quantitative reasoning which applies trigonometry principles encountered in surveying, civil engineering, construction, electronics and related engineering technologies. (Grade Only)

Prerequisites/Corequisites: Course Completion of APTECH 90A (or CET 90A)

Recommended:

Limits on Enrollment:

Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

B Communication and Analytical Fall 2009 Spring 2016

Thinking

B Communication and Analytical Fall 1981 Fall 2009

Thinking

MC Math Competency

CSU GE: Transfer Area Effective: Inactive:

B4 Math/Quantitative Reasoning Fall 1991 Fall 1997

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Spring 1982 Inactive: Spring 2016

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

The student will be able to:

- 1. State the purpose, function and application of trigonometry, including definitions, characteristics of functions, radian and degree measurements, and inverse functions.
- 2. Use the Pythagorean theorem to lay out a right triangle with a tape measure.
- 3. Use trigonometry to solve right and oblique triangles as used in construction trades.
- 4. Apply vectors to analysis of horizontal and vertical components of forces.
- 5. Calculate lengths of arcs and areas of sectors found in the construction trades.
- 6. Graph and analyze trigonometric functions with respect to amplitude, periodicity and resonance.

Topics and Scope:

- 1. Application of Trigonometric Functions
 - a. definitions for surveying
 - b. characteristics of functions used
 - c. radian and degree measurements to triangular lots
 - d. right triangles as found in construction applications
 - e. length and areas of sectors (i.e. streets and highway curves)
- 2. Application involving Oblique Triangles

- a. applying trigonometric functions to similar triangles
- b. oblique triangles
- c. area of triangles
- d. Law of Sines
- e. Law of Cosines
- f. ambiguous triangles and associated errors in judgment
- 3. Components of Vectors and Vector Addition
 - a. definition of vectors
 - b. addition and subtraction of vectors
 - c. complex numbers
 - d. polar coordinates
- 4. Applications of Arc Lengths and Areas
 - a. length and areas of sectors (i.e. streets and highway curves)
 - b. analytic geometry
 - c. irregularly shaped lots
- 5. Application of Sine and Cosine Graphs
 - a. general graphing of functions and graphing by the addition of coordinates
 - b. analysis of amplitude, periodic function and resonance

Assignment:

- 1. Daily reading outside of class (20-40 pages per week)
- 2. Problem set assignments (1-6 per week)
- 3. Quizzes (1-4 per semester)
- 4. Exams (1-8 per semester); Final
- 5. Projects (Calculator explorations and application activities) (2-8 per semester)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Problem set assignments

Problem solving 5 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Projects

Skill Demonstrations 5 - 10%

Exams: All forms of formal testing, other than skill performance exams.

Objective examinations (multiple choice, true false, matching, completion, etc.), quizzes and final.

Exams 70 - 85%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

Technical Mathematics, Paul A. Carter: Wiley, 2011 Technical Mathematics, Dale Ewen: Prentice Hall, 2004.