MATH 16 Course Outline as of Spring 2011

CATALOG INFORMATION

Dept and Nbr: MATH 16 Title: INTRO TO MATH ANALYSIS Full Title: Introduction to Mathematical Analysis Last Reviewed: 1/9/2024

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	4.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 140.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Exponential and logarithmic functions, limits, differential and integral calculus with applications, partial derivatives, and calculator techniques. Emphasis on applications in business and economics.

Prerequisites/Corequisites: Completion of MATH 154 or higher (VE)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Exponential and logarithmic functions, limits, differential and integral calculus with applications, partial derivatives, and calculator techniques. Emphasis on applications in business and economics. (Grade or P/NP) Prerequisites/Corequisites: Completion of MATH 154 or higher (VE) Recommended: Limits on Enrollment:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Thinking	n and Analytical	Effective: Fall 1981	Inactive:
CSU GE:	MC Transfer Area B4	Math Competer Math/Quantitat	•	Effective: Fall 1981	Inactive:
IGETC:	Transfer Area 2A	Mathematical Quantitative Re	1	Effective: Fall 1981	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 1981	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1981	Inactive:	

CID:

CID Descriptor:MATH 140	Business Calculus
SRJC Equivalent Course(s):	MATH16

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

- 1. Perform advanced operations with functions (using symbolic, graphical, and numerical representations) and apply knowledge to modeling problems.
- 2. Define and graph inverse functions.
- 3. Recognize, describe and utilize in graphing the characteristics of polynomial, rational, algebraic, exponential and logarithmic functions.
- 4. Solve equations graphically and algebraically.
- 5. Calculate limits and use limit notation.
- 6. Define the derivative and calculate derivatives of polynomial, rational, algebraic, exponential, and logarithmic functions.
- 7. Use techniques of differentiation, including product, quotient and chain rules.
- 8. Use derivatives as an aid to graphing, in optimization problems, and to analyze business and economic applications.
- 9. Calculate antiderivatives.
- 10. Evaluate definite integrals using the fundamental theorem of calculus.
- 11. Calculate limits and use limit notation with multivariable functions.
- 12. Use partial differentiation and the method of LaGrange multipliers

in optimization problems.

Topics and Scope:

- I. Functions
 - A. Symbolic, graphical, and numerical representations
 - B. Operations and composition
 - C. Inverse functions
 - D. Modeling with functions
- II. Graphs of functions
 - A. Definition and characteristics
 - B. Graphical solutions and numerical solutions of equations
 - C. Graphs of polynomial, rational, algebraic, exponential and logarithmic functions
 - D. Graphs of inverse functions
- III. Differential calculus
 - A. Limits of functions
 - B. Derivatives (including exponential and logarithmic functions)
 - C. Techniques of differentiation (including product, quotient, and chain rules)
 - D. Applications of the derivatives (including optimization)
 - E. Antiderivatives
- IV. Integral calculus
 - A. The fundamental theorem of calculus
 - B. Integration by substitution
 - C. Tables of integrals
 - D. Applications of integration
- V. Multivariable calculus
 - A. Multivariable functions and limits
 - B. Partial differentiation
 - C. Relative max/min in two variables
 - D. LaGrange multipliers

Assignment:

- 1. Reading outside of class (approximately 0-50 pages per week)
- 2. Homework problem sets (10-30)
- 3. Exams (3-7) and quizzes (0-30)
- 4. Projects (e.g. computer exploration or game analysis) (0-2)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course. Writing 0 - 0% **Problem Solving:** Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problem sets

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Objective exams and quizzes

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:

Calculus With Applications (9th ed.). Lial, Margaret; Greenwell, Raymond; Ritchey, Nathan. Pearson 2008. Calculus And Its Applications (12th ed). Goldstein, Larry; Lay, David; Schneider, David. Prentice Hall 2010.

Problem solving 5 - 20%

Skill Demonstrations 0 - 0%

> Exams 70 - 95%

Other Category 0 - 10%