MACH 61.2 Course Outline as of Spring 2011

CATALOG INFORMATION

Dept and Nbr: MACH 61.2 Title: NON-FERROUS METALLURGY Full Title: Non Ferrous Metallurgy Last Reviewed: 9/27/2010

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	MACH 61B

Catalog Description:

Study of non-ferrous metals including alloying, heat treating, testing and applications in industry.

Prerequisites/Corequisites:

Recommended Preparation: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: Study of non-ferrous metals including alloying, heat treating, testing and applications in industry. (Grade Only) Prerequisites/Corequisites: Recommended: Eligibility for ENGL 100 or ESL 100 Limits on Enrollment: Transfer Credit: CSU; Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area CSU GE: Transfer Area				Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 1981	Inactive:	Spring 2019
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of this course, students will be able to:

- 1. Identify non-ferrous metals from periodic table.
- 2. Identify non-ferrous metals by experimentation.
- 3. Describe methods of heat treat for non-ferrous metals and alloys.

4. Explain various techniques applicable to welding of non-ferrous metals and alloys.

5. Describe applications of design, manufacturing, and fabrication of non-ferrous metals, basic plastics, and ceramics.

Topics and Scope:

- 1. Introduction and review of ferrous metals
- 2. History and developments of non-ferrous metals and alloys
- 3. Uses and applications of non-ferrous metals and alloys
- 4. Testing equipment procedures
- 5. Research and design methods
- 6. Library use and research of database for non-ferrous alloys
- 7. Numbering systems for non-ferrous metals and alloys
- 8. Heat treatment of mediums and solutions
- 9. Basic properties of polymers
- 10. Basic properties of ceramics
- 11. Various methods of welding non-ferrous metals and alloys

Assignment:

- 1. Reading assignments of 7 to 15 pages in each chapter
- 2. Quizzes at each class meeting
- 3. 7 to 10 laboratory assignments to be completed during lab sessions
- 4. 1 to 2 mid-term exams

5. A semester group (or individual) project to be presented electronically followed by an oral presentation to the class; the semester project can be substituted with a mid-term paper, as per instructions by instructor, consisting of library research.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Semester project	Writing 20 - 25%
Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.	
Lab assignments	Problem solving 15 - 25%
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.	
None	Skill Demonstrations 0 - 0%
Exams: All forms of formal testing, other than skill performance exams.	
Exams: multiple choice, true/false, matching items, completion	Exams 55 - 60%
Other: Includes any assessment tools that do not logically fit into the above categories.	
None	Other Category 0 - 0%

Representative Textbooks and Materials:

Metallurgy Fundamental, by Brandt and Warner, The Goodheart-Wilcox Company, Inc. 5th ed., 2009.

Instructor prepared materials.