CS 74.42B Course Outline as of Spring 2011

CATALOG INFORMATION

Dept and Nbr: CS 74.42B Title: GAME DEVELOPMENT 2 Full Title: Game Development with C#/XNA 2 Last Reviewed: 3/31/2014

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	4	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

A survey of fundamental game development techniques. The basics of artificial intelligence, animation, real-time rendering, and collision detection/response are covered through the development of a game engine written in Microsoft XNA (Xbox Next-generation Architecture). Students in this class will collaborate to develop games using a realistic industry workflow. This course also addresses professional issues, such as creating resumes and portfolios, technical interviews, and finding engineering jobs within the games industry.

Prerequisites/Corequisites: Course Completion of CS 42 (or CS 74.42 or CS 74.42A)

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: A survey of fundamental game development techniques. The basics of artificial intelligence, animation, real-time rendering, and collision detection/response are covered through the development of a game engine written in Microsoft XNA (Xbox Next-generation

Architecture). Students in this class will collaborate to develop games using a realistic industry workflow. This course also addresses professional issues, such as creating resumes and portfolios, technical interviews, and finding engineering jobs within the games industry. (Grade or P/NP) Prerequisites/Corequisites: Course Completion of CS 42 (or CS 74.42 or CS 74.42A) Recommended: Eligibility for ENGL 100 or ESL 100 Limits on Enrollment: Transfer Credit: CSU; Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	ı		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	: Transferable	Effective:	Spring 2011	Inactive:	Fall 2019
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

- 1. Solve artificial intelligence, rendering, and animation problems.
- 2. Create video games of moderate complexity.
- 3. Discuss common workflow practices in the games industry.
- 4. Craft compelling resumes and portfolios.
- 5. Prepare for rigorous and technical interview process.

Topics and Scope:

- I. Animation
- 1. Frame-based animation
- 2. Elapsed game time vs. real time
- 3. Particle systems
- II. Rendering
- 1. Programmable graphics hardware
- a. GPU (Graphics Processing Unit) architecture summary
- b. HLSL (High-level Shading Language)c. FX ("effects") files
- 2. Real-time lighting models
- a. Lambert's law
- b. Phong
- c. Blinn-Phong

- 3. Shader programming
- a. Ambient lighting
- b. Diffuse lighting
- c. Specular lighting
- d. Bump mapping
- III. Artificial Intelligence
- 1. Finite state machines
- 2. Steering behaviors
- a. Seek
- b. Flee
- c. Pursue
- d. Evade
- e. Flocking: separation, cohesion, alignment
- 3. Pathfinding A* ("A-star")
- IV. Data Driven Development
- 1. Defining data in XML (Extensible Mark-up Language)
- 2. Custom content processors in XNA
- V. Gameplay Engineering
- 1. Save and load game state
- 2. User interface
- 3. Heads-up display
- 4. Collision detection and response
- VI. Industry Workflow
- 1. Standard workflows and source control
- 2. Collaboration with artists and designers
- 3. Technical interviews
- 4. Technical resumes
- 5. Portfolio development
- 6. Milestones for game development
- a. Concept document
- b. Game design document
- c. Technical design document
- d. Prototype
- e. Production
- f. Alpha
- g. Beta
- h. Gold

VII. Professional Issues

- 1. Creating resumes and portfolios
- 2. Technical interviews
- 3. Preparation for and finding engineering jobs within the game industry

Assignment:

- 1. Read approximately 25-30 pages a week.
- 2. Weekly project milestones: students solve iterative programming and workflow problems.
- 3. Prepare sample questions for technical interviews.
- 4. In-class technical interviews: students will interview each other.
- 5. Preparation of a sample resume and portfolio website.
- 6. Written concept, game design, and technical documentation for a team based final project.

7. Final project: a working game that demonstrates the use of the techniques developed in this class.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written concept and technical documentation

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Interative programming, game design, and workflow problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

In-class technical interviews and final project

Exams: All forms of formal testing, other than skill performance exams.

None

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative Textbooks and Materials:

Hall, Joseph. XNA Game Studio Express: Developing Games for Windows and the Xbox 360.
Course Technology PTR, 2007.
Lobao, Alexandra Santos. Beginning XNA 3.0 Game Programming: From Novice to
Professional. Apress, 2009.
Nitschke, Benjamin. Professional XNA Game Programming. Wrox, 2008.
Reed, Aaron. Learning XNA 3.0: XNA 3.0 Game Development for the PC, Xbox 360, and Zune.
O'Reilly Media, 2008.
Instructor prepared materials

Writing 10 - 20% Problem solving 30 - 40% Skill Demonstrations 50 - 50% Exams 0 - 0%

Other Category

0 - 0%