PHYS 11 Course Outline as of Fall 2011

CATALOG INFORMATION

Dept and Nbr: PHYS 11 Title: DESCRIPTIVE PHYSICS

Full Title: Descriptive Physics Last Reviewed: 4/10/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	8	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 210.00

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Descriptive survey of principles of classical and modern physics emphasizing basic concepts, which may include some problem solving using elementary algebra.

Prerequisites/Corequisites:

Completion of MATH 150B or higher (V1) OR Course Completion of MATH 151

Recommended Preparation:

Eligibility for ENGL 1A or equivalent

Limits on Enrollment:

Schedule of Classes Information:

Description: Descriptive survey of principles of classical and modern physics emphasizing basic concepts, which may include some problem solving using elementary algebra. (Grade or P/NP) Prerequisites/Corequisites: Completion of MATH 150B or higher (V1) OR Course Completion

of MATH 151

Recommended: Eligibility for ENGL 1A or equivalent

Limits on Enrollment: Transfer Credit: CSU;UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

C Natural Sciences Fall 2011

CSU GE: Transfer Area Effective: Inactive: B1 Physical Science Fall 2011

B1 Physical Science Fall Laboratory Activity

IGETC: Transfer Area Effective: Inactive:

5A Physical Sciences Fall 2011

5C Fulfills Lab Requirement

CSU Transfer: Transferable Effective: Fall 2011 Inactive:

UC Transfer: Transferable Effective: Fall 2011 Inactive:

CID:

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of this course students should be able to do the following:

- 1. Explain motion in one dimension including free fall, and use Newton's laws to solve problems related to motion.
- 2. Define force, energy, momentum, impulse, and describe the relationship between these parameters.
- 3. Describe types of rotational motion and their application to the movement of planets.
- 4. Explain the states of matter, and atomic and nuclear theory.
- 5. Define temperature, thermal energy and heat transfer and the effect of thermal energy on materials.
- 6. Describe different types of waves, their propagation and interference.
- 7. Describe static electricity, the field associated with charges and the force between various charges.
- 8. Interpret series/parallel circuits and Ohm's law.
- 9. Define magnetism, Ampere's law, Faraday's law of induction and their practical applications.
- 10. Explain full electromagnetic spectrum, visible optics/colors and optical components and systems.
- 11. Describe the wave interference phenomenon.
- 12. Describe the concepts related to relativity, quantum physics, atomic physics and nuclear physics.
- 13. Apply laboratory techniques including computer data acquisition and analysis tools to observe, measure and experiment with physical phenomenae.

Topics and Scope:

1. Mechanics

- a. linear motion
- b. nonlinear motion
- c. Newton's law of motion
- d. momentum
- e. energy
- f. rotational motion
- g. gravity
- h. satellite motion
- 2. Properties of matter
 - a. atomic nature of matter
 - b. solids
 - c. liquids
 - d. gases and plasmas
- 3. Heat
 - a. temperature, heat and expansion
 - b. heat transfer
 - c. change of state
- 4. Sound
 - a. vibrations and waves
 - b. sound
 - c. musical sounds
- 5. Electricity and magnetism
 - a. electrostatics
 - b. electric current
 - c. magnetism
 - d. electromagnetic induction
- 6. Light
 - a. properties of light
 - b. color
 - c. reflection and refraction
 - d. light waves
 - e. light emission
 - f. light quanta
- 7. Atomic and nuclear physics
 - a. the atom
 - b. atomic nucleus and radioactivity
 - c. nuclear fission and fusion
- 8. Relativity
 - a. special theory of relativity
 - b. general theory of relativity
- 9. Laboratory Skills
 - a. laboratory safety
 - b. SI and metric units
- c. using calipers, stopwatches, metersticks, and etc. to make measurements on mechanical systems
 - d. using computers and motion detectors to make measurements on mechanical systems
 - e. using spreadsheets to record data and to calculate and analyze experimental results
 - f. constructing graphs using computer graphing programs
 - g. error analysis
 - h. numerical and graphical analysis of data

Assignment:

- 1. Read approximately one chapter of textbook per week
- 2. Laboratory readings and reports: 12-17
- 3. Laboratory and/or lecture homework assignments: 12-16
- 4. Quizzes: 5-16
- 5. Midterm exams: 2-4
- 6. Laboratory exams: 1-3
- 7. Special projects 0-1
- 8. Class participation
- 9. Final exam: 1

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Lab reports

Writing 10 - 20%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework assignments

Problem solving 10 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, short answer and/or essay, lab exams (required), mid-term exams, final exam

Exams 60 - 70%

Other: Includes any assessment tools that do not logically fit into the above categories.

Special project, class participation

Other Category 0 - 10%

Representative Textbooks and Materials:

Conceptual Physics by Hewitt, 10th ed., Addison Wesley, 2008 Conceptual Physics Laboratory Manual by Hewitt, 10th ed. Addison Wesley, 2008