DET 150 Course Outline as of Spring 2010

CATALOG INFORMATION

Dept and Nbr: DET 150 Title: FLUID POWER BASICS 1

Full Title: Fluid Power Basics 1

Last Reviewed: 7/2/2001

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	0.50	Lecture Scheduled	8.00	1	Lecture Scheduled	8.00
Minimum	0.50	Lab Scheduled	0	1	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	8.00		Contact Total	8.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 16.00 Total Student Learning Hours: 24.00

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Basic theory of fluid power, terminology, components and function as related to industrial and mobile uses of hydraulics and pneumatics.

Prerequisites/Corequisites:

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Basic theory of fluid power, terminology, components and function as related to industrial and mobile uses of hydraulics and pneumatics. (Grade Only)

Prerequisites/Corequisites:

Recommended:

Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Effective: Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Students will be able to:

- 1. Describe the laws of fluid power.
- 2. Identify ISO fluid power symbols.
- 3. Recognize fluid power components used in systems.
- 4. Distinguish differences in open and closed fluid power systems.
- 5. Select the appropriate components for system design.
- 6. Determine specific hydraulic system lines by their markings and dimensions.
- 7. Measure and identify hydraulic and pneumatic system fittings and couplers.
- 8. Construct a hydraulic or pneumatic system on paper using ISO symbols.
- 9. Construct a hydraulic or pneumatic system on paper using component illustrations.

Topics and Scope:

Principles of Hydraulics - Basic laws and theory relating to fluid power

- Related graphic symbols

System Design - Required components

- Open/Closed systems

Hydraulic/Pneumatic System Components - Lines, fittings and couplings

- Pump and motor styles
- Reservoirs and valves
- Actuators

Assignment:

Students will be assigned reading from text and group discussion while attending class.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Quizzes

Problem solving 30 - 90%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

None

Exams 0 - 0%

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance and Participation

Other Category 10 - 70%

Representative Textbooks and Materials:

Fluid Power Data Book, Womack Educational Publications, tenth edition (December 1998)