MACH 61.1 Course Outline as of Spring 2011

CATALOG INFORMATION

Dept and Nbr: MACH 61.1 Title: FERROUS METALLURGY Full Title: Ferrous Metallurgy Last Reviewed: 12/12/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	MACH 61A

Catalog Description:

Study of ferrous metals including alloying, heat treating, testing and applications in industry.

Prerequisites/Corequisites:

Recommended Preparation: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: Study of ferrous metals including alloying, heat treating, testing and applications in industry. (Grade Only) Prerequisites/Corequisites: Recommended: Eligibility for ENGL 100 or ESL 100 Limits on Enrollment: Transfer Credit: CSU; Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	L		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	l		Effective:	Inactive:
CSU Transfer	:Transferable	Effective:	Fall 1981	Inactive:	Fall 2018
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of this course, students will be able to:

- 1. Describe the basic properties of all ferrous metals.
- 2. Describe the process of mining, extraction and refining of ores to metals.
- 3. Identify metals and alloys using the periodical table of elements or tables of alloys

numbering systems.

- 4. Explain various crystal structures.
- 5. Explain heat treatment processes and surface hardening techniques pertinent to steel alloys.
- 6. Use handout materials, text and library materials to do research on metallurgical alloys.
- 7. Perform basic lab experiments including: plotting data, dimensional measurements, heat

treatments, tensile loading and metallurgical sample preparation and examination methods.

Topics and Scope:

- 1. Introduction to metallurgy
- 2. History of elements
- 3. Iron and steel refining
- 4. Identifying ferrous metals
- 5. Crystal structure systems
- 6. Tensile test
- 7. Heat treatment techniques
- 8. Quenching medias
- 9. Hardness testers
- 10. Physical and chemical metallurgy
- 11. Grain structure and patterns
- 12. Iron and steel systems
 - a) A.I.S.I. [American Iron and Steel Institute]
 - b) S.A.E. [Society of Automotive Engineers]
 - c) U.S.S. [United States Standard]
 - d) A.W.S. [American Welding Society]
- 13. Density measurements
- 14. Surface hardening methods

Assignment:

- 1. Reading (approximately 10 15 pages per week)
- 2. Complete assignments in each chapter
- 3. Chapter quizzes
- 4. 7 to 10 laboratory assignments to be completed during the lab sessions
- 5. 1 to 2 mid-term exams

6. A semester group (or individual) project to be presented electronically followed by an oral presentation to the class; the semester project can be substituted with a mid-term paper, as per instructions by instructor, consisting of library research

Writing

20 - 25%

Problem solving

15 - 25%

Skill Demonstrations

0 - 0%

Exams

55 - 60%

Other Category

0 - 0%

7. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Semester project

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Lab assignments, chapter assignments

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Exams: multiple choice, true/false, matching items, completion

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative Textbooks and Materials:

Metallurgy Fundamental by Brandt/Warner, 5th ed. The Goodheart-Wilcox Company, Inc., 2009.

Instructor prepared materials