MATH 2 Course Outline as of Fall 2010

CATALOG INFORMATION

Dept and Nbr: MATH 2 Title: CALCULUS 4 Full Title: Calculus, Fourth Course-Differential Equations Last Reviewed: 11/28/2022

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	MATH 2B

Catalog Description:

First and second order differential equations with applications, series solutions, numerical methods, introduction to Laplace transforms, systems of differential equations with applications.

Prerequisites/Corequisites: Course Completion of MATH 1C OR MATH 2A

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: First and second order differential equations with applications, series solutions, numerical methods, introduction to Laplace transforms, systems of differential equations with applications. (Grade Only) Prerequisites/Corequisites: Course Completion of MATH 1C OR MATH 2A Recommended: Limits on Enrollment: Transfer Credit: CSU;UC.

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B MC	Communication Thinking Math Compete	n and Analytical	Effective: Fall 1981	Inactive:
CSU GE:	Transfer Area	1	ney	Effective:	Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	:Transferable	Effective:	Fall 1981	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1981	Inactive:	

CID:

CID Descriptor:MATH 240	Ordinary Differential Equations
SRJC Equivalent Course(s):	MATH2

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

- 1. Identify differential equations as to order, type, and kind.
- 2. Solve elementary differential equations, including separable and linear differential equations.
- 3. Model and solve applied problems involving ordinary differential equations.
- 4. Use numerical techniques to approximate solutions to differential equations.
- 5. Solve initial value problems using Laplace Transforms with tables.
- 6. Apply Taylor series to solve differential equations.
- 7. Solve systems of differential equations.

Topics and Scope:

- I. Ordinary Differential Equations
 - A. Linear differential equations with applications
 - B. Slope fields
 - C. Numerical methods including 4th order Runge-Kutta
- II. Introduction to Laplace Transforms
 - A. Laplace transform and inverse
 - B. Use of tables
 - C. Application to linear differential equations
- III. Series Solutions to Differential Equations
- Taylor series solutions to differential equations
- IV. Systems of Differential Equations A. Analysis of phase portraits

- B. Solution by matrices
- C. The operator method or Laplace transforms
- D. Use of systems to solve higher order linear ordinary differential equations
- E. Applications
 - 1. coupled spring-mass systems
 - 2. compartment analysis
 - 3. other applications

Assignment:

- 1. Daily reading outside of class (20-50 pages per week).
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor (1-6 per week).
- 3. Quizzes (0-4 per week).
- 4. Exams (3-8 per term).
- 5. Projects (for example, computer explorations or modeling activities, 0-10 per term).

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice and free response exams; quizzes

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:

Writing 0 - 0%

Problem solving 5 - 20%

Skill Demonstrations 0 - 0%

> Exams 70 - 95%

Other Category 0 - 10% Differential Equations (3rd). Blanchard, Devaney, Hall. Thomson: 2006.