PHYS 2B Course Outline as of Fall 2008

CATALOG INFORMATION

Dept and Nbr: PHYS 2B Title: GENERAL PHYSICS PART II

Full Title: General Physics Lecture Part II

Last Reviewed: 4/22/2019

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Electricity and magnetism, light and modern physics.

Prerequisites/Corequisites:

PHYS 2A. Not open to students enrolled in or who have completed PHYS 42

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Electricity and magnetism, light and modern physics. (Grade or P/NP)

Prerequisites/Corequisites: PHYS 2A. Not open to students enrolled in or who have completed

PHYS 42

Recommended:

Limits on Enrollment:

Transfer Credit: CSU;UC. (CAN PHYS 3B+PHYS 2B=PHYS4)(PHYS 3B+PHYS 3A+PHYS

2B+PHYS 2A=PHYS SEQ A)

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

C Natural Sciences Spring 1982

CSU GE: Transfer Area Effective: Inactive:

Physical Science Spring 1982

IGETC: Transfer Area Effective: Inactive:

5A Physical Sciences Spring 1982

CSU Transfer: Transferable Effective: Spring 1982 Inactive: Fall 2021

UC Transfer: Transferable Effective: Spring 1982 Inactive: Fall 2021

CID:

CID Descriptor: PHYS 100S Algebra/Trigonometry-Based Physics: AB

SRJC Equivalent Course(s): PHYS20 AND PHYS20L AND PHYS21 AND PHYS21L OR

PHYS20A AND PHYS20B

CID Descriptor:PHYS 110 Algebra/Trigonometry-Based Physics B SRJC Equivalent Course(s): PHYS21 AND PHYS21L OR PHYS20B

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, the student will be able to:

- 1. Describe the concepts of static charges, including Coulomb's law, field pattern, and conductivity.
- 2. Define the electric potential and its application to capacitors and solve problems related to various capacitor combinations.
- 3. Describe resistance, and solve problems related to various resistor combinations in a direct current circuit, using Kirchhoff's rules including RC circuits.
- 4. Describe magnetism, calculate the force on a moving charge, and analyze the magnetic field generated by current passing through various components using the Ampere's law.
- 5. Describe Faraday's law of induction and solve problems related to circuits containing inductors in DC and AC circuits.
- 6. Explain the concepts related to the reflection and refraction of light and image formation in the mirrors, lenses and various optical systems.
- 7. Apply the concept of wave interference to explain interference patterns in the Young's double slit, single slit and diffraction grating.
- 8. Describe the concept of the special theory of relativity.
- 9. Describe various concepts related to atomic/nuclear and quantum physics including Black Body radiation, X-ray, wave function, atomic spectra, radioactive decay and nuclear reaction.

Topics and Scope:

1. Electric charges, forces and fields

- 2. Electric potential
- 3. Direct current circuits
- 4. Magnetism
- 5. Electromagnetic induction
- 6. Alternating current and electronics
- 7. Electromagnetic waves
- 8. Properties of light
- 9. Optical devices
- 10. Interference, diffraction, and polarization of light
- 11. Special relativity
- 12. Early quantum physics
- 13. Atomic structure and the emission of light
- 14. Nuclear physics

Assignment:

- 1. No less than twelve sets of homework problems
- 2. Zero to fifteen quizzes
- 3. No less than three mid-term exams
- 4. Final exam
- 5. Reading 20-40 pages per week

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Homework problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice exams, quizzes, and physics problems

Other: Includes any assessment tools that do not logically fit into the above categories.

Writing 0 - 0%

Problem solving 15 - 35%

Skill Demonstrations 0 - 0%

Exams 65 - 85%

None	Other Category 0 - 0%	
------	--------------------------	--

Representative Textbooks and Materials:Essentials of College Physics by Serway/Vuille, Thomson-Brooks/Cole, 2007 Physics by Cutnell and Johnson, 7h edition, Wiley, 2007