RADT 63B Course Outline as of Fall 2008

CATALOG INFORMATION

Dept and Nbr: RADT 63B Title: RADIOBIOLOGY/RAD PROTECT

Full Title: Radiobiology and Radiation Protection

Last Reviewed: 9/25/2023

Units		Course Hours per Week	•	Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	17.5	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Principles of radiobiology, effects of radiation, health physics, introduction to fluoroscopy, quality assurance, and radiation protection procedures.

Prerequisites/Corequisites:

Course Completion of RADT 63A and Concurrent Enrollment in RADT 62AL (or RADT 62A)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Principles of radiobiology, effects of radiation, health physics, introduction to

fluoroscopy, quality assurance, and radiation protection procedures. (Grade Only)

Prerequisites/Corequisites: Course Completion of RADT 63A and Concurrent Enrollment in

RADT 62AL (or RADT 62A)

Recommended:

Limits on Enrollment:

Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 1981 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of this course students will be able to:

- 1. Define quality assurance and quality control.
- 2. List the 10-step quality assurance model used in hospitals.
- 3. List all aspects of a quality assurance program within a typical radiology department.
- 4. Name the three steps of quality control.
- 5. Describe the processes of mitosis and meiosis.
- 6. Evaluate the radiosensitivity of tissues and organs.
- 7. Describe the radiation dose-response relationship.
- 8. Describe the three acute radiation syndromes.
- 9. Differentiate between early and late effects of radiation.
- 10. List, discuss, and explain the long and short-term hazards of radiation to human beings.
- 11. Explain the cardinal principles of radiation protection.
- 12. Discuss the ALARA (As Low As Reasonably Achievable) principle.
- 13. Explain the theories and list the methods for radiation protection of medical personnel and patients.
- 14. List all of the State and national radiation health and safety regulations for radiologic technology personnel.

Topics and Scope:

- I. Quality assurance
- II. Quality control
- III. Human radiation response
 - A. Cell theory
 - B. Molecular composition
 - C. Tissues and organs
- IV. Radiobiology
 - A. Law of Bergomie and Tribondeau

- B. Radiation responses
- C. Dose response relationship
- D. Biological factors in radiosensitivity
- V. Irradiation of macromolecules
 - A. Point lesions
 - B. Macromolecular synthesis
 - C. Radiation effects on DNA
 - D. Cell recovery
- VI. Linear energy transfer
- VII. Relative biological effectiveness
- VIII. Acute radiation lethality
 - A. Prodromal period
 - B. Hematologic syndrome
 - C. Gastrointestinal syndrome
 - D. Central nervous system syndrome
 - E. Mean survival time
- IX Local tissue damage
- X. Hematologic effects
- XI. Cytogenetic effects
- XII. Late effects of radiation exposure
- XIII. Radiation Protection
 - A. Cardinal principles
 - B. Personal monitoring and devices
 - C. Dose limits
 - D. Safe practices
 - 1. X-rays
 - 2. Pregnancy
- XIV. Quality Assurance procedures
- XV. Fluoroscopy
 - A. Image intensifier
 - B. Medical television system

Assignment:

- 1. Weekly chapter readings (10 25 pages/week).
- 2. Completion of 8 10 lab experiments (lab reports).
- 3. One ALARA project.
- 4. 6 quizzes, 1 written final, 1 lab final

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written homework, Lab reports

Writing 10 - 20%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, Lab reports, ALARA project

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Quizzes, written final

Problem solving 10 - 20%

Skill Demonstrations 0 - 0%

Exams: 50 - 60%

Other: Includes any assessment tools that do not logically fit into the above categories.

Lab final exam

Other Category 20 - 30%

Representative Textbooks and Materials:

- RADIOLOGIC SCIENCE FOR TECHNOLOGISTS by S. Bushong, Mosby, 2006.
- Instructor-prepared material