CIS 58.81A Course Outline as of Fall 2002

CATALOG INFORMATION

Dept and Nbr: CIS 58.81A Full Title: Cisco Networking 1 Last Reviewed: 1/28/2002

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	2.00	8	Lab Scheduled	35.00
		Contact DHR	1.50		Contact DHR	26.25
		Contact Total	5.50		Contact Total	96.25
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00

Total Student Learning Hours: 166.25

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	CIS 84.81A

Catalog Description:

First semester of Cisco's Networking Academy curriculum. Topics include Basic networking, OSI model and TCP/IP protocol.

Prerequisites/Corequisites:

Recommended Preparation: Completion of CIS 51.15 and eligibility for ENGL 100A or ENGL 100 or ESL 100.

Limits on Enrollment:

Schedule of Classes Information:

Description: First semester of Cisco's Networking Academy curriculum. Topics include Basic networking, OSI model and TCP/IP protocol. (Grade Only) Prerequisites/Corequisites: Recommended: Completion of CIS 51.15 and eligibility for ENGL 100A or ENGL 100 or ESL 100. Limits on Enrollment: Transfer Credit: CSU;

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	a		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	:: Transferable	Effective:	Spring 2001	Inactive:	Spring 2011
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

The student will:

- 1. Identify and describe the functions of each of the seven layers of the OSI reference model.
- 2. Compare and contrast data link and network addresses and identify key differences between them.
- 3. Define and describe the function of a MAC address.
- 4. List the key internetworking functions of the OSI Network layer.
- 5. Identify at least three reasons why the industry uses a layered model.
- 6. Compare and contrast the two parts of network addressing then identify the parts in specific protocol address examples.
- 7. Distinguish the function of each layer of the ISO/OSI reference model.
- 8. Demonstrate the five conversion steps of data encapsulation
- 9. Distinguish between the different classes of IP addresses (and subnetting).
- 10. Analyze the functions of the TCP/IP network-layer protocols.

Topics and Scope:

- 1. Introduction to Networking
 - a. basic concepts and terminology.
 - b. OSI reference model
- 2. Defining Networking
 - a. two or more connected computer systems define a network.
 - b. wired and wireless
 - c. LANs
 - d. WANs
- 3. Origins of Networking/Brief history
- 4. Why Do We Use Networks?
 - a. Increasing dependence on technology has increased the need for networked devices.

- b. People expect interoperability between electronic devices such as TVs, VCRs, and stereos systems.
- c. Networked devices share hardware and software. This is more convenient and less expensive than standalone systems.
- 5. Networking Terminology
 - a. Connection Media
 - b. Client/Server Networks
 - 1) Print servers
 - 2) File servers
 - 3) Database servers
 - 4) Remote access servers (RAS)
 - 5) Web servers
 - c. Peer-to-Peer
 - d. LAN, WAN, and MAN
 - 1) Usually a LAN is local
 - 2) MAN is citywide
 - 3) WAN spans multiple geographic areas.
 - 4) CAN (Campus Area Network) is sometimes used to describe college networks
 - 5) The term FAN (Family Area Network) is a relatively new term describing a home with more than one computer networked together.
 - e. NOS
 - g. NIC
 - h. Networking Hardware
 - i. Networking Software
- 6. Understanding the OSI Model
 - a. history
 - b. layers: physical, data link, network, transport, session, presentation, application.
 - c. Most vendors agreed to support OSI. This made it easier to implement a variety of networks.
- 7. Reasons for Layering
 - a. Simplifies networking by dividing it into less complex components
 - b. Enables programmers to specialize in a particular layer
 - c. Provides modularity which allows upgrades to a specific layer to remain separate from the other layers
 - d. Encourages interoperability by promoting balance between different networking models
 - e. Allows for standardized interfaces to be produced by vendors
- 8. Data Encapsulation
 - a. data encapsulation in terms of the OSI reference model.
 - b. Five steps of data encapsulation.
 - 1) data conversion
 - 2) segmentation
 - 3) packet creation
 - 4) frame
 - 5) bit transmission
- 9. Layer Functions
 - a. Physical
 - 1) Media and other physical characteristics of the hardware
 - 2) Encoding

- 3) Signal transmission
- 4) Repeaters and hubs
- b. Data Link
 - 1) The frame which is the final formatting of the data before it is sent
 - 2) Access to the media
 - 3) Flow control and error-free transmission
 - 4) MAC address which is burned into the NIC card; 12-digit hexadecimal number; aka physical address or hardware address
 - 5) sublayers:
 - 1. LLC sublayer
 - 2. MAC sublayer
 - 6) CSMA/CD which is the access method used on Ethernet networks
 - 7) Bridging and switching
- c. Network
 - 1) Error handling
 - 2) Software address (aka logical address)
 - 3) Packets
 - 4) Best path selection
 - 5) Routing and routers
 - 6) Example network protocols: IP and IPX
- d. Transport
 - 1) Point-to-point transmission
 - 2) Error-free delivery and flow control
 - 3) Segmentation for optimal packet size
 - 4) Windowing and acknowledgements (ACKS) (discussed later)
 - 5) Connection-oriented and connectionless transmission
 - 6) Example transport protocols: TCP, UDP, and SPX
- e. Session
 - 1) Sets up the conversation; session setup and tear down
 - 2) Control of data exchange for example full or half-duplex
 - 3) Data synchronization
 - 4) Transmission interruption and recovery
 - 5) Example session protocols: SQL, RPC, X-Windows
- f. Presentation
 - 1) Prepares data from the application layer for transmission
 - 2) Reformats incoming data
 - 3) Formatting, translation, compression, and decompression
 - 4) Encryption and decryption
 - 5) Example presentation components: BMP, WAV, EBCDIC, ASCII
- g. Application
 - 1) Where communications originate
 - 2) Initiates the request for network services
 - 3) Provides services to applications
 - 4) End system
- 5) User interface
 - 6) Example application layer programs: email, file transfer
- 10. Origins of TCP/IP
 - a. The invention and evolution of the TCP/IP protocol ARPAnet
 - b. U.S. Government
 - c. The DOD.
 - d. named the Internet, considered public domain.

- 11. Overview of the TCP/IP Protocol Suite
 - a. Four layers: Application, Transport, Internetwork, and Network Interface. These layers correspond to the layers in the OSI reference model.
 - b. Request for Comments (RFCs)
 - c. Compare the TCP/IP protocol suite to the OSI networking reference model.
 - 1) Application layer
 - 2) Transport layer
 - 3) Internetwork layer
 - 4) Network Interface layer
- 12. Application Layer
 - a. The TCP/IP Application layer includes protocols for e-mail, remote logins, file transfers, Web browsing, network management, and name management.
 - 1) FTP: "The File Transfer Protocol (FTP)
 - 2) TFTP: "The Trivial File Transfer Protocol (TFTP).
 - 3) NFS: "The Network File System (NFS)
 - 4) SMTP: "The Simple Mail Transfer Protocol (SMTP)
 - 5) Telnet: " A telnet client can use this terminal emulation protocol (telnet)
 - 6) rlogin: "The remote login application (rlogin)
 - 7) SNMP: "You can install the Simple Network Management Protocol (SNMP) on TCP/IP hosts, including routers and other devices that support TCP/IP.
 - 8) DNS: "The Domain Name System (DNS).
 - 9) HTTP: "The World Wide Web uses the Hypertext Transfer Protocol (HTTP).
- 13. Transport Layer
 - a. Transport layer functions
 - b. TCPs network overhead
 - c. TCP reliability and the four steps of three-way handshake
 - d. Ports
 - 1) port numbers for communications between hosts.
 - 2) Well-Known Port Numbers
 - e. TCP Three-way Handshake and its four steps
- 14. Internetwork Layer
 - a. IP
 - b. ICMP.
 - c. ARP.
 - d. RARP.
- 15. Troubleshooting
 - a. PING
 - b. Traceroute
- 16. Network Interface Layer
 - a. The TCP/IP Network Interface-OSI Data Link and Physical layers
 - b. No specific IP functions exist at this layer
- 17. IP Addressing
 - a. compared to MAC addresses
 - b. what it identifies
- 18. IP Classes A-E what they are assigned to and address details
- 19. Subnet Addressing

- a. Subnet Address
- b. Broadcast Address

20. Subdividing IP Classes

- a. Reasons
- b. Subnet Masking
- c. Learning to Subnet
- e. Subnetting Formulas
- f. CIDR Classless Inter-Domain Routing (CIDR) notation method

Assignment:

- 1. Individual hands-on exercises to demonstrate each topic.
- 2. Reading approximately 50 pages weekly from the textbook.
- 3. Participate in class discussion topics.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments and skill demonstrations are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, Quizzes, Exams, Hands-on computer exercises

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

SET UP, MAINTAIN AND TROUBLESHOOT NETWORKS

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion, PERFORMANCE EXAM(S)

Other: Includes any assessment tools that do not logically fit into the above categories.

Writing 0 - 0%

> Problem solving 20 - 50%

Skill Demonstrations 20 - 50%

Exams 20 - 50%

Other Category 0 - 0%

None

Representative Textbooks and Materials: "CCNA Guide to Cisco Networking Fundamentals" by Kurt Hudson and Kelly Cannon - Course Technology 2000