ELEC 53.12 Course Outline as of Spring 2004

CATALOG INFORMATION

Dept and Nbr: ELEC 53.12 Title: PLC'S-MAINT TECHS-1

Full Title: Programmable Logic Controllers for Maintenance Technicians 1

Last Reviewed: 10/17/2011

Units		Course Hours per Week	•	Nbr of Weeks	Course Hours Total	
Maximum	2.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	2.00	Lab Scheduled	0	2	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	2.00		Contact Total	35.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 105.00

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: ELEC299.41

Catalog Description:

Programmable Logic Controllers for the Maintenance Technician. Identification and troubleshooting of typical controller problems; beginning to intermediate ladder logic programming; essentials of working in an industrial environment.

Prerequisites/Corequisites:

Recommended Preparation:

Completion of ELEC 53.11.

Limits on Enrollment:

Schedule of Classes Information:

Description: Programmable logic controllers for the maintenance technician. Identification and troubleshooting of typical controller problems; beginning to intermediate ladder logic programming; essentials of working in an industrial environment. (Grade Only)

Prerequisites/Corequisites:

Recommended: Completion of ELEC 53.11.

Limits on Enrollment:

Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Spring 2004 Inactive: Fall 2017

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of this course the student will be able to, at a beginning to intermediate level:

- 1. Design and set up software in a control system and make it work properly.
- 2. Interpret and apply safety procedures in a manufacturing environment.
- 3. Originate proper tagout procedures when working on electrical equipment.
- 4. Develop a PLC (Programmable Logic Controller) program using ladder logic.
- 5. Recognize and evaluate faults in sensors and output devices.
- 6. Evaluate and troubleshoot software problems.

Topics and Scope:

- 1. Types of input devices
- 2. Types of output devices
- 3. Types of controllers
- 4. Types of software
- 5. Fundamentals of control programs
- 6. Basic instructions
- 7. Loading software and operating PLCs
- 8. Basic tag out procedures
- 9. Basic Manufacturing safety
- 10. Wiring, DC inputs, AC inputs, Relay Outputs, Transistor outputs

Assignment:

1. Investigate operation of DC and AC outputs, Relay Outputs, and Transistor outputs and write evaluation.

- 2. Design and evaluate software used to control a Stepper motor.
- 3. Review a manufacturing process and design software that could be used to automate the sequencing of machines used in that process.
- 4. Write four 2-3 page case studies of applications of PLCs to manufacturing environments.
- 5. Midterm and final exam.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Case studies.

Writing 20 - 30%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, Lab reports

Problem solving 40 - 60%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion, Short answer.

Exams 20 - 30%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

Your Personal PLC Tutor (A guide to understanding PLC's) by Phil Melore, copyright 2003 Phil Melore, (PLCS.net).