CIS 10 Course Outline as of Summer 2008

CATALOG INFORMATION

Dept and Nbr: CIS 10 Title: INTRO TO PROGRAMMING

Full Title: Introduction to Computer Programming

Last Reviewed: 2/8/2021

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	4.00	Lab Scheduled	1.00	17.5	Lab Scheduled	17.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 140.00 Total Student Learning Hours: 227.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: CIS 10A

Catalog Description:

Specification, design, implementation, testing, debugging, maintenance, and documentation of computer programs. Topics include algorithms, languages, software engineering, control structures, functions, data abstraction using classes, and arrays. Numerous programs are written in C++. Intended for both computer science majors and for those seeking a general introduction to computer programming.

Prerequisites/Corequisites:

Completion of MATH 155 or higher (V2)

Recommended Preparation:

Eligibility for ENGL 1A or equivalent

Limits on Enrollment:

Schedule of Classes Information:

Description: Algorithms, languages, software engineering, control structures, functions, data abstraction using classes, and arrays. Numerous programs are written in C++. Intended for both computer science majors and for those seeking a general introduction to computer programming. (Grade Only)

Prerequisites/Corequisites: Completion of MATH 155 or higher (V2)

Recommended: Eligibility for ENGL 1A or equivalent

Limits on Enrollment:

Transfer Credit: CSU;UC. (CAN CSCI22)

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Spring 1989 Inactive:

UC Transfer: Transferable Effective: Spring 1989 Inactive:

CID:

CID Descriptor: COMP 122 Programming Concepts and Methodology I

SRJC Equivalent Course(s): CS10A OR CS10B

CID Descriptor: COMP 112 Introduction to Programming Concepts and Methodologies

SRJC Equivalent Course(s): CS10A

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of this course students will be able to:

- 1. Translate integers, real numbers, and characters into machine representation.
- 2. Create correct and efficient algorithms.
- 3. Implement the software-development life cycle.
- 4. Produce multi-file programs using an integrated development environment.
- 5. Employ the basic elements of the C++ language.
- 6. Use object-oriented language features as a client programmer.
- 7. Implement algorithms using C++ flow-control constructs.
- 8. Understand career objectives related to Computer Science.
- 9. Use information and learning resources as they pertain to Computer Science.

Topics and Scope:

- 1. Basic Computer Organization
 - a. Basic hardware components of a computer
 - b. Binary representation of data
- 2. Algorithms
 - a. The concept of an algorithm
 - b. Problem solving techniques
 - c. Efficiency and correctness

3. Languages

- a. History
- b. Procedural vs. object-oriented
- c. Compiled vs. interpreted
- 4. Software Engineering
 - a. The software life cycle
 - b. Object-oriented design
 - c. Functional decomposition
 - d. Documentation
 - e. Ethical Issues
- 5. Integrated Development Environments
 - a. Projects
 - b. Editors
 - c. Debuggers
- 6. C++ Language Basics
 - a. Interactive input/output
 - b. File input/output
 - c. Variables and constants
 - d. Arithmetic expressions and operators
 - e. Data types int, double, char, bool, and string
- 7. Decision Structures
 - a. If and if/else statements
 - b. Switch statement
 - c. Logical expressions and operators
- 8. Iteration Structures
 - a. While statement
 - b. Do-while statement
 - c. For statement
 - d. Nested logic
- 9. Functions
 - a. User-defined functions: void and value-returning
 - b. Top-down design/stepwise refinement
 - c. Procedural abstraction
 - d. Scope and lifetime of identifiers
 - e. Reference and value parameters
 - f. Library functions
- 10. Classes
 - a. Structs
 - b. Data abstraction and abstract data types
 - c. Encapsulation/information hiding
 - d. Private/public members
 - e. Class scope
 - f. Using multiple files
 - g. Constructors, including multiple constructors
 - h. Passing objects using const &
 - i. Declaring const member functions
- 11. Arrays
 - a. One-dimensional Arrays
 - b. Multi-dimensional Arrays
 - c. Null terminated strings (as arrays)
 - d. Insert, delete, and sequential search for unordered list
 - e. Insert, delete, and binary search for ordered list

12. Enumeration types

Assignment:

- 1. Maintain a reading schedule for the text(s), approximately 30 pages per week.
- 2. Write programs using the C++ programming language.
- 3. Test and debug programs.
- 4. Write program documentation.
- 5. Take objective examinations.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written program documentation

Writing 10 - 20%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, hands-on assignments

Problem solving 20 - 60%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion, Programming exercises

Exams 20 - 60%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

- 1. Problem Solving with C++: The Object of Programming, by Walter Savitch Addison-Wesley Longman 2003
- 2. Programming and Problem Solving with C++, by Nell Dale Jones and Bartlett 2002