CIS 110A Course Outline as of Spring 2004

CATALOG INFORMATION

Dept and Nbr: CIS 110A Title: PROGRAMMING CONCEPTS
Full Title: Concepts for Beginning Programmers
Last Reviewed: 9/10/2018

Units		Course Hours per Week	Nbr of Weeks		Course Hours Total	
Maximum	1.50	Lecture Scheduled	3.00	8	Lecture Scheduled	24.00
Minimum	1.50	Lab Scheduled	0	8	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	24.00
				Non-contact DHR	0	

Total Out of Class Hours: 48.00
Total Student Learning Hours: 72.00

Title 5 Category: AA Degree Applicable
Grading: Grade Only
Repeatability: $\quad 00$ - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Catalog Description:

A brief introduction to computer programming concepts using languages appropriate to such learning. This course is designed for students who do not intend to pursue further study of computer programming or who intend to continue in the field but desire a gentle introduction to the subject. Taught in a hands-on environment.

Prerequisites/Corequisites:

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: A brief introduction to computer programming concepts using languages appropriate to such learning. This course is designed for students who do not intend to pursue further study of computer programming or who intend to continue in the field but desire a gentle introduction to the subject. Taught in a hands-on environment. (Grade Only)
Prerequisites/Corequisites:

Recommended:
Limits on Enrollment:
Transfer Credit:
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

$\begin{array}{ll}\text { AS Degree: } & \text { Area } \\ \text { CSU GE: } & \text { Transfer Area }\end{array}$
IGETC: Transfer Area
CSU Transfer:

UC Transfer:

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:
Upon completion of this course, students will be able to:

1. Create correct algorithms
2. Design and implement computer programs that employ conditional and repetitive control structures.
3. Design and implement computer programs that employ subprograms.
4. Classify program errors.
5. Design and implement computer programs using stepwise refinement.
6. Design and implement computer programs that employ simple recursion.

Topics and Scope:

I. Primitive instructions
II. Basic program structure
III. Classifying programming errors
IV. Creating and calling subprograms
A. The Correctness of subprograms
B. Stepwise refinement
C. Program design techniques
D. Advantages of using subprograms
E. Writing understandable programs
V. Conditional Execution
A. If statements
B. If/else statements
C. Nested if statements
D. Complex conditions
E. When to use conditional execution
F. Transformations for simplifying if statements
G. The dangling else
VI. Repetitive Execution
A. While statements
B. Errors to avoid with repetitive execution
C. Nested while statements
D. Reasoning about while statements
E. When to use repetitive execution
VII. Simple recursion

Assignment:

1. Maintain a reading schedule for the text(s), approximately 20 pages per week.
2. Write computer programs.
3. Test and debug computer programs.
4. Take objective examinations.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0-0\%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Writing computer programs

Problem solving
30-70\%
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None
Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion, Computer programming questions

Other: Includes any assessment tools that do not logically fit into the above categories.
\square

Other Category
0-0\%
"A Gentle Introduction to the Art of Programming, Second Edition", by Richard E. Pattis - John Wiley \& Sons, Inc., 1995

