CHEM 1B Course Outline as of Spring 2008

CATALOG INFORMATION

Dept and Nbr: CHEM 1B Title: GENERAL CHEMISTRY

Full Title: General Chemistry Last Reviewed: 5/13/2019

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	5.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	5.00	Lab Scheduled	3.00	17.5	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	7.00		Contact Total	122.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 140.00 Total Student Learning Hours: 262.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

A continuation of Chemistry 1A. Topics include Chemical Kinetics, Thermodynamics, Chemical Equilibrium, Nuclear Chemistry, Electrochemistry, Coordination Compounds and Bonding, and Selected Topics in Descriptive Chemistry.

Prerequisites/Corequisites:

Chemistry 1A or equivalent with a grade of "C" or better.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Second semester of a one year program of general chemistry. (Grade Only) Prerequisites/Corequisites: Chemistry 1A or equivalent with a grade of "C" or better.

Recommended:

Limits on Enrollment:

Transfer Credit: CSU;UC. (CAN CHEM4)(CHEM 1A+CHEM 1B=CHEM SEQ A)

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

C Natural Sciences Fall 1981

CSU GE: Transfer Area Effective: Inactive:

B1 Physical Science Fall 1981

B3 Laboratory Activity

IGETC: Transfer Area Effective: Inactive:

5A Physical Sciences Fall 1981

5C Fulfills Lab Requirement

CSU Transfer: Transferable Effective: Fall 1981 Inactive: Fall 2020

UC Transfer: Transferable Effective: Fall 1981 Inactive: Fall 2020

CID:

CID Descriptor: CHEM 120S General Chemistry for Science Majors Sequence A

SRJC Equivalent Course(s): CHEM1A AND CHEM1B OR CHEM4A AND CHEM4B OR

CHEM3A AND CHEM3AL AND CHEM3B

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

After successful completion of this course, a student will be able to:

- 1. Identify factors that affect the rate of a chemical reaction, and measure those rates experimentally in order to determine a rate law for that reaction.
- 2. Describe phenomena related to nuclear chemistry and radioactivity and perform associated calculations.
- 3. Use bonding theories such as molecular orbital theory and hybridization to explain the bonding in transition metal complexes.
- 4. Apply the principles of electrochemistry in the construction of galvanic and electrolytic cells.
- 5. Apply the laws of thermodynamics to chemical reactions and chemical equilibrium.
- 6. Describe specific behavior of various categories of elements on the periodic table.

Topics and Scope:

Lecture Material

- 1. Chemical Kinetics
- 2. Nuclear Chemistry and Radioactivity
- 3. Advanced topics in chemical bonding including transition metal complexes
- 4. Thermodynamics and Chemical Equilibrium
- 5. Electrochemistry
- 6. Descriptive Chemistry
- 7. Introduction to Organic Chemistry

Laboratory Material

1. Titration

- 2. Chemical Kinetics
- 3. Chemical Synthesis
- 4. Electrochemistry
- 5. UV-visible spectroscopy
- 6. The use of computer interfaces for the collection of laboratory data
- 7. The use of spreadsheets for computation in the laboratory

Assignment:

- 1. Specific reading and study assignments from the lecture textbook (averaging 10-30 pages per week)
- 2. Completion of recommended end-of-chapter problems (averaging 15-20 per week)
- 3. Laboratory experiments and accompanying reports
- 4. Midterm Exams, Quizzes, Final Exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written homework, Lab reports

Writing 10 - 25%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Homework problems, Lab reports

Problem solving 20 - 45%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Class performances, Lab skill techniques/accuracy of lab results

Skill Demonstrations 5 - 15%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Completion, Problem solving & short

Exams 40 - 60%

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance, assignments submitted on time, improvement demonstrated on final exam

Other Category 0 - 5%

Representative Textbooks and Materials:

Chemistry: The Central Science by Brown, LeMay, Bursten; Prentice Hall

2006

Chemistry: The Molecular Nature of Matter and Change by Silberberg,

McGraw Hill, 2006

Principles of Modern Chemistry by Oxtoby, Gillis, Nachtrieb, Brooks/Cole, 2002

Chemistry by Zumdahl, Houghton Mifflin, 2004

Chemical Principles by Zumdahl, Houghton Mifflin, 2005

Chemistry and Chemical Reactivity by Kotz, Treichel, Weaver, Brooks/Cole 2006

Lab Manuals

Laboratory Experiments for Chemistry: The Central Science, by Nelson and

Kemp, Prentice Hall, Current edition

Experiments in General Chemistry by Greco, Rickard, Weiss, Prentice Hall, Current edition