MATH 1A Course Outline as of Fall 2008

CATALOG INFORMATION

Dept and Nbr: MATH 1A Title: CALCULUS 1 Full Title: Calculus, First Course Last Reviewed: 9/14/2020

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	5.00	Lecture Scheduled	5.00	17.5	Lecture Scheduled	87.50
Minimum	5.00	Lab Scheduled	0	8	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 175.00

Total Student Learning Hours: 262.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Limits and continuity, differentiation, applications of the derivative, integration, applications of the integral, methods of integration.

Prerequisites/Corequisites: Completion of MATH 27 or completion of MATH 25 and MATH 58

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Limits and continuity, differentiation, applications of the derivative, integration, applications of the integral, methods of integration. (Grade Only) Prerequisites/Corequisites: Completion of MATH 27 or completion of MATH 25 and MATH 58 Recommended: Limits on Enrollment: Transfer Credit: CSU;UC. (CAN MATH18)(MATH 1A+MATH 1B=MATH SEQ B)(MATH 2A+MATH 1A+MATH 1B=MATH SEQ C)

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B MC	Thinking	n and Analytical	Effective: Fall 1981	Inactive:
CSU GE: Transfer Are B4		Math Competer Math/Quantitat	2	Effective: Fall 1981	Inactive:
IGETC:	Transfer Area 2A	Mathematical Quantitative Re	1	Effective: Fall 1981	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 1981	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1981	Inactive:	

CID:

CID Descriptor:MATH 900S	Single Variable Calculus Sequence
SRJC Equivalent Course(s):	MATH1A AND MATH1B

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

- 1. Calculate limits and use limit notation.
- 2. Determine derivatives of polynomial, rational, algebraic, exponential, logarithmic, and trigonometric functions.
- 3. Use techniques of differentiation, including product, quotient, and chain rules, and determine derivatives implicitly.
- 4. Apply derivatives to graphing, optimization, and science applications.
- 5. Determine antiderivatives of polynomial, rational, algebraic, exponential, logarithmic, and trigonometric functions.
- 6. Evaluate definite integrals using the fundamental theorem of calculus.
- 7. Use numerical integration to approximate definite integrals.
- 8. Apply definite integration to compute area, volumes, and arc length, and to solve problems in science and related fields.
- 9. Apply methods of integration, including integration by parts, partial fractions, and use of tables or a computer algebra system.

Topics and Scope:

- I. Limits and Continuity
 - A. Definitions
 - 1. Limit
 - 2. Basic limit theorems

- B. Limits from graphs
- C. Continuity
- II. The Derivative
 - A. Definition
 - B. Difference quotients
 - C. Slope of tangent line
 - D. Velocity, acceleration and rates of change
 - E. Product, quotient, and chain rules
 - F. Basic differentiation formulas for algebraic, trigonometric, logarithmic, exponential, inverse trigonometric and hyperbolic functions
 - G. Antiderivatives
- III. Applications of the Derivative
 - A. Implicit differentiation
 - B. Mean value theorem
 - C. Differentials
 - D. Related rates
 - E. Optimization
 - F. Separable differential equations
 - G. Other applications and modeling
- IV. The Integral
 - A. Riemann sums
 - B. Definite and indefinite integrals
 - C. Fundamental theorem of calculus
 - D. Integration of polynomial, logarithmic, exponential, and trigonometric functions
 - E. Integration by substitution
 - F. Numerical integration
- V. Applications of the Integral
 - A. Area
 - B. Volumes
 - C. Arc length
 - D. Other applications and modeling
- VI. Methods of Evaluation
 - A. Integration by parts
 - B. Partial fractions
 - C. Use of tables or computer algebra systems

Assignment:

- 1. Daily reading outside of class (approximately 20-50 pages per week).
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor (approximately 1-6 per week).
- 3. Quizzes (approximately 0-4 per week).
- 4. Exams (approximately 3-8 per term).
- 5. Projects (for example, computer explorations or modeling activities, approximately 0-10 per term).

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice and free response exams; quizzes

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:

Calculus: Early Transcendentals (6th). Stewart, James. Thomson Brooks/Cole: 2008.

Writing 0 - 0%

Problem solving 5 - 20%

Skill Demonstrations 0 - 0%

> Exams 70 - 95%

Other Category 0 - 10%