CIS 22 Course Outline as of Fall 2003

CATALOG INFORMATION

Dept and Nbr: CIS 22 Full Title: Assembly Language Programming Last Reviewed: 1/28/2019

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	5.00		Contact DHR	87.50
		Contact Total	8.00		Contact Total	140.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 245.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	BDP 22

Catalog Description:

Introductory computer architecture and techniques of assembly language programming as they apply to the Intel family of microprocessors. Topics include theory and concepts of virtual memory, pipelines, caches, and multitasking, IA-32 hardware architecture (bus, memory, stack, I/O, interrupts), design of structured assembly language code, use of software interrupts, survey arithmetic notations (binary, hexadecimal, floating- point, binary-coded decimal), input/output, and disk processing concepts.

Prerequisites/Corequisites:

Course Completion of CIS 10B

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Techniques of assembly language programming for the Intel family of microprocessors. (Grade Only) Prerequisites/Corequisites: Course Completion of CIS 10B

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	L		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	L		Effective:	Inactive:
CSU Transfer	:Transferable	Effective:	Fall 1982	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1982	Inactive:	

CID:

CID Descriptor:COMP 142	Computer Architecture and Organization
SRJC Equivalent Course(s):	CS12

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

- 1. Distinguish and categorize the architectural components of a microcomputer
- 2. Apply microcomputer design principles to identify architectural components of the Intel X86 family of microprocessors and demonstrate ability to utilize microcomputer capabilities through assembly language programs
- 3. Create a complete set of source modules using standard design tools
- 4. Prepare executable assembly language programs which include at least one subroutine library module
- 5. Create programs which carry out binary arithmetic operations, floating-point, and BCD (binary-coded decimal)
- 6. Demonstrate ability to convert numbers to and from decimal, binary, octal, and hexadecimal
- 7. Use three BIOS (basic input-output system)
- 8. Write an interrupt handler

Topics and Scope:

- 1. Assembly Language Environment
 - A. Software design process
 - B. Programming tools
 - 1. editors
 - 2. assemblers
 - 3. debuggers

- C. Hardware environment
 - 1. networking
 - 2. workstations
 - 3. peripheral devices
- D. Assembly language overview
 - 1. general syntax notation
 - 2. instruction categories
 - 3. high-level language interface
- 2. Data Types and Number System
 - A. Numeric data
 - 1. number system
 - a. binary, decimal, octal, hexadecimal
 - b. number system conversions
 - 2. arithmetic notation
 - a. binary, signed and unsigned
 - b. floating point
 - c. two's complement
 - d. BCD (binary-coded decimal)
 - B. Character data
 - C. ASCII (American Standard Code for Information Interchange)
 - character set
- 3. Computer Architecture
 - A. Microprocessors
 - B. Data, control, address bus
 - C. Registers
 - D. Memory
 - E. Stack
 - F. Interrupts
 - G. Peripheral device I/O (input/output)
 - H. Virtual memory
 - I. Pipelines and caches
 - J. CISC (complex instruction set computer) versus RISC (reduced instruction set computer)
- 4. Instruction Set
 - A. Addressing modes
 - B. Data transfer instructions
 - C. Software interrupt structure
 - D. Arithmetic operations
 - E. Control structures
 - F. Stack operations
 - G. String operations
- 5. Peripheral Device Access
 - A. Graphics displays
 - B. Disk I/O
 - C. Standard list device

Assignment:

- 1. Read approximately 25 pages per week from textbook.
- 2. Prepare hierarchy charts and structured flowcharts.
- 3. Code, assemble, link, and debug approximately 10 Assembly Language programs per semester, including an interrupt handler.

- 4. Write technical documentation to accompany programs.
- 5. Take quizzes and exams.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, PROGRAMMING EXERCISES

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion, SHORT ANSWER & PROGRAMMING

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative Textbooks and Materials:

"Assembly Language for Intel-Based Computers," 4th edition, by Kip Irvine - Prentice Hall 2002

Writing 0 - 0%	

Problem solving	
40 - 60%	

Skill Demonstrations	
0 - 0%	

Exams	
40 - 60%	

Other Category 0 - 0%