CHEM 60 Course Outline as of Fall 2024

CATALOG INFORMATION

Dept and Nbr: CHEM 60 Title: GEN ORG BIOL CHEM

Full Title: General, Organic and Biological Chemistry

Last Reviewed: 5/9/2022

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	5.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	5.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	7.00		Contact Total	122.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 140.00 Total Student Learning Hours: 262.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

In this course, students will study basic concepts of general, organic and biological chemistry. This course is appropriate for nursing and related majors that require one semester of chemistry.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for MATH 150 or equivalent AND eligibility for ENGL 100 OR EMLS 100 (formerly ESL 100)

Limits on Enrollment:

Schedule of Classes Information:

Description: In this course, students will study basic concepts of general, organic and biological chemistry. This course is appropriate for nursing and related majors that require one semester of chemistry. (Grade or P/NP)

Prerequisites/Corequisites:

Recommended: Eligibility for MATH 150 or equivalent AND eligibility for ENGL 100 OR

EMLS 100 (formerly ESL 100)

Limits on Enrollment: Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

C Natural Sciences Fall 1981

CSU GE: Transfer Area Effective: Inactive:

B1 Physical Science Fall 2016

B3 Laboratory Activity

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 1981 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Recognize and apply the underlying chemical foundations of medicine and life.
- 2. Correlate microscopic and macroscopic behavior of matter.
- 3. Solve quantitative problems relating to chemical principles.
- 4. Safely use basic equipment to observe and measure chemical and physical properties in the laboratory.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Recognize the structures and functional groups of lipids, carbohydrates, proteins, and nucleic acids.
- 2. Demonstrate a basic understanding of organic reactions.
- 3. Recognize the importance of chemistry in health care and society.
- 4. Explain bulk properties of gases from a molecular scale perspective.
- 5. Relate intermolecular forces to physical properties of substances.
- 6. Draw Lewis structures and relate them to isomerism and molecular geometry.
- 7. Calculate quantities related to concentrations of solutions.
- 8. Use moles and mole ratios to calculate quantities in reactions.
- 9. Assemble and handle appropriate lab equipment effectively and safely.
- 10. Develop skills of observation, recordkeeping, and lab notebook maintenance.
- 11. Interpret observations using chemical principles.

Topics and Scope:

Lecture-Related Topics & Scope:

I. Atomic Theory

- A. Structure of the atom
- B. Organization of the periodic table
- C. Ions
- D. Mole concept
- II. Laboratory Measurements and Calculations
- III. Chemical Bonding and Molecular Structure
 - A. Ionic compounds
 - B. Covalent compounds
 - C. Organic structures and functional groups
 - D. Isomerism and stereochemistry
- IV. Chemical Reactions
 - A. Balancing reactions
 - B. Basic organic reactions
 - C. Simple acid-base reactions
 - D. Le Chatelier's principle
 - E. Reaction mechanisms and associated energy changes
- V. Matter at the Sub-microscopic Level
 - A. Gases, liquids, and solids
 - B. Qualitative atomic theory of gases
 - C. Intermolecular forces
- VI. Solutions
 - A. Measures of concentration
 - B. Diffusion, osmosis, and dialysis
 - C. pH and buffers
- VII. Biological Molecules
 - A. Lipids
 - B. Carbohydrates
 - C. Amino acids and peptides
 - D. Proteins
 - E. Nucleic acids
- VIII. Metabolism

Lab-Related Topics & Scope:

Lab material will be chosen each semester to supplement or reinforce most of the topics above, and may include:

- I. Measurements, Metric System, and Conversions
- II. Lewis Structures and Molecular Geometry
- III. Reactions and Observations
- IV. Gases
- V. Stoichiometry
- VI. Diffusion, Osmosis, and Dialysis
- VII. Solutions
- VIII. Lipids
- IX. Acids, Bases, and Buffers
- X. Carbohydrates
- XI. Amino Acids
- XII. Enzymes
- XIII. Lab Skill Evaluation

Assignment:

1. Reading (1-2 chapters per week)

- 2. Homework assignments (0-16)
- 3. Laboratory reports (11-16)
- 4. Exams (3-5) and final exam
- 5. Quiz(zes) (0-8)

All topics are covered in the lecture and lab portions of the course.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Laboratory reports

Writing 20 - 35%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework assignments

Problem solving 0 - 15%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Quiz(zes) and exams

Exams 60 - 75%

Other: Includes any assessment tools that do not logically fit into the above categories.

Class and laboratory participation

Other Category 0 - 5%

Representative Textbooks and Materials:

General, Organic and Biological Chemistry. 4th ed. Frost, Laura and Deal, Todd. Pearson. 2020. Chemistry: An Introduction to General, Organic, and Biological Chemistry. 13th ed. Timberlake, Karen. Pearson. 2017 (classic).

General, Organic, and Biological Chemistry: An Integrated Approach. 4th ed. Raymond, Kenneth. Wiley. 2013 (classic).

General, Organic, and Biochemistry. 10th ed. Denniston, Katherine, Topping, Joseph and Quirk, Danae. McGraw Hill. 2020.

Laboratory Materials:

Instructor prepared materials

Chemistry 60 Laboratory Manual. Ormcen, Tatjana. Arbor Crest. 2014 (classic).