MICRO 60 Course Outline as of Fall 2024

CATALOG INFORMATION

Dept and Nbr: MICRO 60 Title: FUNDMTL MICROBIOLOGY Full Title: Fundamentals of Microbiology Last Reviewed: 5/8/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Students will study the major concepts of microbiology with emphasis on those related to infectious disease. Students will learn basic techniques for cultivation and identification of microorganisms.

Prerequisites/Corequisites: Course completion of BIO 10 or higher (V7); AND Completion of CHEM 60, CHEM 3A (OR CHEM 1A), or higher (V6)

Recommended Preparation: Course Completion of ENGL 1A

Limits on Enrollment:

Schedule of Classes Information:

Description: Students will study the major concepts of microbiology with emphasis on those related to infectious disease. Students will learn basic techniques for cultivation and identification of microorganisms. (Grade or P/NP) Prerequisites/Corequisites: Course completion of BIO 10 or higher (V7); AND Completion of CHEM 60, CHEM 3A (OR CHEM 1A), or higher (V6)

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area C Transfer Area B2 B3	Natural Sciences a Life Science Laboratory Activity		Effective: Fall 1981 Effective: Fall 1981	Inactive: Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	:Transferable	Effective:	Fall 1981	Inactive:	
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

1. Integrate basic principles of microbial cell structure and processes as they apply to medical microbiology.

2. Explain the impact of microbiology on medical, public health, and environmental concerns.

3. Perform, and explain the theory behind, basic laboratory techniques used for routine culture and identification of bacteria.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Define microorganism and categorize microbes by domain and kingdom.
- 2. Describe the history of the discovery of the microbial world.
- 3. Relate microbial causality of disease to Koch's postulates.
- 4. Describe the basic chemical activities essential to life.
- 5. Describe the structure of prokaryotic and eukaryotic cells.
- 6. Contrast genetic mutation, recombination, conjugation, transformation, and transduction.
- 7. Describe viruses and their relationships to cells and vaccines.
- 8. Compare various mechanisms of pathogenicity.
- 9. Describe the function of the immune system and its relation to disease.
- 10. Relate environmental influences on host resistance to public health measures.
- 11. Perform basic microbiological laboratory techniques.

Topics and Scope:

Lecture-Related Topics & Scope: I. History of Microbiology

- A. Discovery, microscopy, and staining
- B. Koch's postulates and causality
- C. Scientific method as it applies to microbiology

II. Unity of Life

- A. Cells and chemistry
- B. Structure and function of nucleic acids
- C. Structure and function of proteins
- D. Energy metabolism
- E. Prokaryotes and eukaryotes
- F. Antibiotics and selective toxicity
- III. Taxonomy and Identification
 - A. DNA based methodologies
 - B. Epidemiology
 - C. Select normal flora and pathogens
- **IV.** Microbial Genetics
 - A. Mutation and recombination
 - 1. Plasmids, conjugation, transduction, and transformation
 - 2. Biotechnology
 - B. Antibiotic paradox
- V. Viruses
 - A. Discovery and definitions
 - B. Interactions with host cell
 - C. Anti-viral vaccination and chemotherapy
 - D. Retroviruses, HIV disease, and cancer
- VI. Host's Role in Disease
 - A. Symbiosis
 - B. Non-specific resistance
 - C. The immune system and immunization
 - D. Environmental influences on host resistance
- Lab-Related Topics & Scope:
- VII. Laboratory Exercises
 - A. Laboratory safety and sanitation
 - B. Laboratory techniques
 - 1. Aseptic techniques
 - 2. Bacterial culture (liquid and solid medium)
 - 3. Microscopy and staining techniques
 - 4. Preparation and sterilization of media
 - 5. Analyses of bacteria in water samples and on the human skin
 - 6. Antibiotic sensitivity
 - 7. Metabolic tests and bacterial identification
 - 8. ELISA (enzyme-linked immunosorbent assay)
 - 9. Identification of unknown bacteria

Assignment:

Lecture-Related Assignments:

1. Reading assignments from text, averaging one chapter per week; additional reading assignments at 5-10 pages per week

- 2. Research paper
- 3. Examinations (3-4), such as:
 - A. Lecture exams

B. Final exam

4. Quiz(zes) (0-15)

5. Concept map assignment may be included

Lab-Related Assignments:

1. Lab practical exams (2-3)

2. Laboratory experiments, such as:

A. Data collection

B. Demonstration of sterile and culture technique

C. Lab skills may also be assessed by performance in the identification of an unknown bacteria (research paper or lab report)

3. Laboratory report: involves description of process student undertakes to identify unknown bacteria

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Research paper; laboratory report

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Concept map

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Laboratory experiments

Exams: All forms of formal testing, other than skill performance exams.

Examinations; quiz(zes); lab practical exams

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative Textbook	s and Materials:

Microbiology: An Introduction. 14th ed. Tortora, Gerard, Funke, Berdell and Case, Christine. Pearson. 2024.

Microbiology: A Systems Approach. 6th ed. Cowan, Marjorie. McGraw-Hill. 2020. Instructor prepared lab manual

Problem solving 0 - 5%
Skill Demonstrations 0 - 10%
Exams

Other Category 0 - 0%

Writing

10 - 20%