ELEC 54B Course Outline as of Fall 2022

CATALOG INFORMATION

Dept and Nbr: ELEC 54B Title: ELECTRONIC DEVICES

Full Title: Fundamentals of Electronic Devices

Last Reviewed: 12/13/2021

Units		Course Hours per Week	,	Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

In this course students will be Introduced to electronic devices and concepts of solid-state rectifier and amplifier circuits.

Prerequisites/Corequisites:

Course Completion of ELEC 54A

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: In this course students will be Introduced to electronic devices and concepts of

solid-state rectifier and amplifier circuits. (Grade Only)

Prerequisites/Corequisites: Course Completion of ELEC 54A

Recommended:

Limits on Enrollment: Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 2016 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Identify and describe the characteristics and applications of semiconductor materials.
- 2. Evaluate the characteristics of devices and apply them to the analysis of power supplies and solid state amplifiers.
- 3. Apply multimeter and oscilloscope measurement techniques to solid state circuits.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Identify the characteristics of semiconductor materials and p-n junctions.
- 2. Identify common diode/rectifier power supply circuits.
- 3. Compare the characteristics of basic power supply filters.
- 4. Identify the characteristics of regulated power supplies.
- 5. Calculate circuit values from existing circuit designs of solid state amplifiers.
- 6. Calculate input impedance (Zin), output impedance (Zo) and amplifier gain.
- 7. Recognize the effects of loading upon an individual amplifier stage.
- 8. Describe the behavior of both series and parallel resonance on amplifier performance.
- 9. Identify operation amplifier (op amp) circuits.

Topics and Scope:

- I. Semiconductor Physics of a p-n Junction for Forward and Reverse Bias Conditions
- II. Diode Circuits
 - A. Rectifiers
 - 1. Half-wave
 - 2. Full-wave
 - 3. Bridge
 - **B.** Limiters
 - C. Clampers
- III. Power Supply Filter Circuits
 - A. Percent of ripple
 - B. Percent of regulation

IV. Regulated Power SuppliesA. Three terminal fixedB. Three terminal adjustableC. Common problems

- V. Power Supplies
 - A. Linear regulators
 - 1. Series regulators
 - 2. Shunt regulators
- VI. Power Supply Types
 - A. Single voltage
 - B. Bipolar voltage
 - C. Voltage multipliers
- VII. Solid State Device Structures and Characteristics
 - A. Bipolar junction transistor (BJT)
 - B. Junction field effect transistor (JFET) and common source (CS) linear amplifier
 - C. Load lines
 - D. Biasing
 - E. Amplification
 - 1. Input impedance (Zin)
 - 2. Output impedance (Zo)
 - F. Thermal stability
- VIII. Basic Amplifier Configurations and Characteristics
 - A. Common input
 - 1. Common emitter
 - 2. Common source
 - B. Common output
 - 1. Common collector
 - 2. Common drain
 - C. Common control
 - 1. Common base
 - 2. Common gate
- IX. Series and Parallel Resonance, Q Factor and Bandwidth
- X. Amplifier Classes: A, AB, B, C
- XI. Operational Amplifier (Op Amp) Fundamentals as Applied to Systems
 - A. Basic parameters
 - 1. Open and closed loop gain
 - 2. Cut off frequency
 - 3. Slew rate
 - 4. Gain bandwidth product (GBP)
 - 5. Common mode rejection ratio (CMRR)
 - B. BJT differential amp
- XII. Oscillators
 - A. Resistor capacitor (RC)
 - B. Inductor capacitor (LC)
 - C. Mechanical
 - 1. Crystal
 - 2. Surface acoustic wave (SAW)
 - D. Modular

LABORATORY MATERIAL

- I. Diodes & Rectification
- II. Power Supply Filtering and Regulation

- III. Bipolar Junction Transistor (BJT) Biasing Load Line
- IV. BJT Common Emitter (CE) Linear Amplifier and Common Collector (CC)
- V. Oscillators
 - A. Inductor capacitor (LC)
 - B. Resistor capacitor (RC) (Wien-Bridge oscillator)
 - C. 555 Oscillator
- VI. Amplifier Lab (discrete)
 - A. Single stage (Op amp)
 - B. Multi stage (Op amp summing amp)
 - C. Operational amplifiers (Op amp) lab
 - D. Summing amps and comparators

Assignment:

Lecture

- 1. Textbook readings (20-30 pages per week)
- 2. Homework (1-2 per week)
- 3. Quizzes (2-4)
- 4. One midterm and one final exam

Laboratory

- 1. Lab assignments (1-2 per week)
- 2. Lab Reports (8-14)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Lab reports

Writing 20 - 30%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, lab assignments

Problem solving 30 - 40%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Quizzes, midterm and final exam

Exams 30 - 40%

Other: Includes any assessment tools that do not logically fit into the above categories.

Representative Textbooks and Materials: Electronics Fundamentals: A Systems Approach. Floyd, Thomas L. and Buchla, David M.. Pearson Education, Inc. 2014 (classic)