CATALOG INFORMATION

Dept and Nbr: PHYS 42
Title: ELECTRICITY & MAGNETISM

Full Title: Electricity and Magnetism for Scientists and Engineers

Last Reviewed: 1/23/2017

Catalog Description:
This is a course intended for science and engineering students and will include electricity, magnetism and electromagnetic waves.

Prerequisites/Corequisites:
Completion of PHYS 40 or higher (V5) and Course Completion or Current Enrollment in MATH 1C

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:
Description: This is a course intended for science and engineering students and will include electricity, magnetism and electromagnetic waves. (Grade Only)
Prerequisites/Corequisites: Completion of PHYS 40 or higher (V5) and Course Completion or Current Enrollment in MATH 1C

Recommended:
Limits on Enrollment:
Transfer Credit: CSU; UC.
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area
C Natural Sciences

CSU GE: Transfer Area
B1 Physical Science
B3 Laboratory Activity

IGETC: Transfer Area
5A Physical Sciences
5C Fulfills Lab Requirement

CSU Transfer: Transferable
Effective: Fall 1983
Inactive:

UC Transfer: Transferable
Effective: Fall 1983
Inactive:

CID:
CID Descriptor: PHYS 200S
SRJC Equivalent Course(s): PHYS40 AND PHYS41 AND PHYS42 AND PHYS43

CID Descriptor: PHYS 210
SRJC Equivalent Course(s): PHYS42

Certificate/Major Applicable:
Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:
Upon completion of the course, students will be able to:
1. Apply laws of physics to analyze and solve problems related to electromagnetism and circuits.
2. Design and assemble apparatuses to measure electromagnetic phenomena.
3. Analyze and make meaningful comparisons between experiment and theory.
4. Effectively communicate principles and processes of electromagnetism and circuits.

Objectives:
In order to achieve these learning outcomes, during the course the students will:
1. Define and solve problems related to static electric fields and forces.
2. Use Gauss's law to solve problems involving charged conductors and insulators.
3. Define and calculate the electric potential for point charges and charged conductors and insulators.
4. Obtain the electric field from an electric potential.
5. Calculate the capacitance of capacitors with and without dielectrics.
6. Solve problems related to current, resistance, electrical power and Ohm's law.
7. Use Kirchhoff's rules to analyze direct current (DC) circuits.
8. Define and solve problems related to the properties of magnetic fields and forces.
9. Use the Biot-Savart and Ampere's laws to calculate the magnetic field produced by currents.
10. Use Faraday's law of induction to calculate motional emf.
11. Analyze resistors, inductors and capacitors in alternating current (AC) circuits using
12. Solve problems related to the design of transformers and power transmission.
13. Describe Maxwell's equations and the properties of electromagnetic waves.

Lab Objectives:

1. Develop and conduct experiments that apply the scientific method and error analysis to
explore principles in static electricity, AC/DC circuits, electronic components and magnetism.
2. Use manual and computerized data collection techniques to measure and analyze parameters
related to electricity and magnetism.
3. Plot, curve fit, and interpret data using a spreadsheet or other analysis tools.

Topics and Scope:

1. Electric Field
 a. Electric charges and field lines
 b. Coulomb’s law
 c. Electric field of continuous charges
 d. Motion of charged particle in electric field
2. Gauss’s Law
 a. Electric flux
 b. Calculation electric field using the Gauss’s law
 c. Conductors in electrostatic field
3. Electric Potential
 a. Potential difference in a uniform electric field
 b. Electric potential of point charge and charged conductor of various simple geometries
 c. Finding electric field from electric potential
4. Dielectrics
 a. Capacitances
 b. Combinations of capacitances
 c. Energy stored in capacitors
 d. Electric dipole
5. Current and Resistance
 a. Electric current, resistance and effect of temperature
 b. Conductivity and resistivity
 c. Electrical power
6. DC Circuits
 a. Batteries and emf
 b. Resistors in series and parallel
 c. Kirchhoff’s rules
 d. RC circuits
7. Magnetic Field
 a. Magnetic force on a moving charge and its applications
 b. Magnetic force on a current carrying conductor
 c. Torque on a current loop in a uniform magnetic field
 d. Hall effect
8. Sources of Magnetic Field
 a. Biot-Savart law
 b. Ampere’s law
 c. Magnetic field of currents flowing in straight wires, solenoid, toroid and sheets
 d. Gauss’s law in magnetism
e. Magnetic materials and magnetic field of the Earth

9. Faraday’s Law
 a. Motional emf
 b. Lenz’s law
 c. Induced emf, generators and motors
 d. Eddy current

10. Inductance
 a. Self inductance, inductors and mutual inductance
 b. RL circuits
 c. Stored energy in a magnetic field
 d. Oscillation in LC and RLC circuits

11. AC Circuits
 a. Resistors, inductors and capacitors in AC circuits
 b. Phasors
 c. Series RLC circuit
 d. Power in AC circuits
 e. Transformers and power transmission

12. Electromagnetic Waves
 a. Poynting’s vector
 b. Maxwell’s equations
 c. Plane electromagnetic waves
 d. Polarization of light
 e. Energy carried and pressure exerted by electromagnetic waves
 f. Electromagnetic spectrum

All topics are covered in both the lecture and lab parts of the course.

Assignment:

Lecture Related Assignments:
1. Homework problem sets (10-30)
2. Quizzes (5-15)
3. Mid-term exams (2-4)
4. Final exam

Lab- and Lecture-Related Assignments:
1. Laboratory experiments and reports (12-16)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

| Written lab reports | Writing 5 - 20% |

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

| Homework problem sets; Laboratory experiments | Problem solving 10 - 30% |
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

| None | Skill Demonstrations 0 - 0% |

Exams: All forms of formal testing, other than skill performance exams.

| Objective examinations, quizzes, mid-terms, final | Exams 40 - 70% |

Other: Includes any assessment tools that do not logically fit into the above categories.

| Participation and attendance | Other Category 0 - 10% |

Representative Textbooks and Materials:
Physics For Scientists And Engineers. 10th ed. Serway, Raymond and Jewett, John. Cengage L. 2018