SRJC Course Outlines

9/12/2024 4:15:00 PMCHEM 3B Course Outline as of Fall 2020

New Course (First Version)
CATALOG INFORMATION

Discipline and Nbr:  CHEM 3BTitle:  GENERAL CHEMISTRY 2  
Full Title:  General Chemistry Part 2
Last Reviewed:8/26/2024

UnitsCourse Hours per Week Nbr of WeeksCourse Hours Total
Maximum5.00Lecture Scheduled3.0017.5 max.Lecture Scheduled52.50
Minimum5.00Lab Scheduled6.008 min.Lab Scheduled105.00
 Contact DHR0 Contact DHR0
 Contact Total9.00 Contact Total157.50
 
 Non-contact DHR0 Non-contact DHR Total0

 Total Out of Class Hours:  105.00Total Student Learning Hours: 262.50 

Title 5 Category:  AA Degree Applicable
Grading:  Grade Only
Repeatability:  00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As: 
Formerly: 

Catalog Description:
Untitled document
A continuation of Chemistry 3A. Topics include chemical kinetics, thermodynamics, chemical equilibrium, acids and bases, nuclear chemistry, electrochemistry, coordination compounds and bonding, and selected topics in descriptive chemistry. Laboratory emphasizes methods of analytical chemistry and quantitative work.

Prerequisites/Corequisites:
Course Completion of CHEM 3A AND CHEM 3AL; OR CHEM 1A; or equivalent


Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information
Description: Untitled document
A continuation of Chemistry 3A. Topics include chemical kinetics, thermodynamics, chemical equilibrium, acids and bases, nuclear chemistry, electrochemistry, coordination compounds and bonding, and selected topics in descriptive chemistry. Laboratory emphasizes methods of analytical chemistry and quantitative work.
(Grade Only)

Prerequisites:Course Completion of CHEM 3A AND CHEM 3AL; OR CHEM 1A; or equivalent
Recommended:
Limits on Enrollment:
Transfer Credit:CSU;UC.
Repeatability:00 - Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION

Associate Degree:Effective:Fall 2020
Inactive: 
 Area:C
Natural Sciences
 
CSU GE:Transfer Area Effective:Inactive:
 B1Physical ScienceFall 2020
 B3Laboratory Activity  
 
IGETC:Transfer Area Effective:Inactive:
 5APhysical SciencesFall 2020
 5CFulfills Lab Requirement  
 
CSU Transfer:TransferableEffective:Fall 2020Inactive:
 
UC Transfer:TransferableEffective:Fall 2020Inactive:
 
C-ID:
 CID Descriptor: CHEM 120S General Chemistry for Science Majors Sequence A SRJC Equivalent Course(s): CHEM1A AND CHEM1B OR CHEM4A AND CHEM4B OR CHEM3A AND CHEM3AL AND CHEM3B

Certificate/Major Applicable: Both Certificate and Major Applicable



COURSE CONTENT

Student Learning Outcomes:
At the conclusion of this course, the student should be able to:
Untitled document
1.  Analyze and solve chemical systems using quantitative models.  
2.  Relate the concepts of chemical equilibrium and free energy.  
3.  Apply the principles of quantitative analysis in a laboratory setting.  
4.  Analyze unknown samples using advanced instrumentation.  
5.  Write comprehensive laboratory reports to effectively analyze data and communicate results
    and conclusions.

Objectives: Untitled document
At the conclusion of this course, the student should be able to:
1.   Solve for the concentrations or pressures of various species in a chemical equilibrium.
2.   Apply the concepts of chemical equilibrium to acids and bases, buffers, titration, solubility,
      electrochemistry and metal complex formation.
3.   Determine the free energy change for a physical or chemical process at nonstandard
      conditions.
4.   Apply the principles of electrochemistry in the construction and analysis of voltaic and
      electrolytic cells.  
5.   Use kinetics to describe the rate and possible mechanisms of a reaction.  
6.   Describe isomerism and bonding in transition metal complexes.
7.   Describe the kinetics and other phenomena related to nuclear chemistry and radioactivity.
8.   Identify and control factors that influence experimental error in gravimetric and volumetric
      analysis.
9.   Use advanced instrumentation, such as ultraviolet-visible and infrared (IR) spectroscopy, gas
      chromatography (GC) and atomic absorption (AA) in analysis of unknowns.  
10. Analyze experimental error qualitatively and with statistical methods.  
11. Apply chemical principles to real world situations.

Topics and Scope
Untitled document
I. Colligative Properties
    A. Vapor pressure lowering
    B. Freezing point depression
    C. Boiling point elevation
    D. Osmosis
II. Kinetics
    A. Reaction rates and rate laws
    B. Determining rate laws
    C. Integrated rate laws
    D. Activation energy and the Arrhenius equation
    E. Reaction mechanisms
    F. Catalysis
III. Chemical Equilibrium
    A. Equilibrium constants (K) and quotients (Q)
    B. Le Chatelier's principle
    C. Dependence on temperature
    D. Methods and approximations for solving equilibrium systems
IV. Aqueous Equilibria
    A. Weak acids and bases
    B. pH, pKa, buffers and titration
    C. Polyprotic acids
    D. Solubility equilibria
    E. Common ion effect
    F. Complex ion equilibria
V. Entropy and Free Energy
    A. Second Law of Thermodynamics
    B. Change in Entropy
    C. Free Energy and Work
    D. Free Energy, Equilibrium and Direction of Reaction
VI. Electrochemistry
    A. Balancing oxidation-reduction reactions
    B. Voltaic cells
    C. Standard reduction potentials
    D. Concentration cells and the Nernst equation
    E. Batteries
    F. Electrolysis
VII. Coordination Chemistry of Transition Metals
    A. Coordination compounds
    B. Types of isomerism
    C. Ligand Field Theory
VIII. Nuclear Chemistry
    A. Types of radioactive decay
    B. Kinetics of decay
    C. Applications
    D. Fission and fusion
IX. Introduction to Organic Chemistry
    A. Basic structures and nomenclature
    B. Isomerism
    C. Functional groups
 
Laboratory material:
1. Lab safety and maintaining a lab notebook
2. Colligative properties
3. Determining rate law and activation energy
4. Determining an equilibrium constant
5. Buffers
6. Indicators
7. Potentiometric titration
8. Solubility products
9. Determination of an unknown
10. Voltaic Cells
11. Electrolytic Cells
12. Synthesis and analysis of a metal complex
13. Nuclear chemistry
14. Techniques and skills
    a. Use of spreadsheet software
    b. Instrumental analysis
    c. Use of calibration curves
    d. Writing laboratory reports
 
All sections are covered in the lecture and lab portions of the course.

Assignments:
Untitled document
Lecture-Related Assignments:
1. Specific reading and study assignments from the lecture textbook (10-30 pages per week)
2. Completion of recommended end-of-chapter problems (15-20 per week)
3. Midterm exams (2-5), quizzes (0-4), final exam
 
Laboratory-Related Assignments:
1. Laboratory experiments and accompanying reports (13-18)

Methods of Evaluation/Basis of Grade.
Writing: Assessment tools that demonstrate writing skill and/or require students to select, organize and explain ideas in writing.Writing
5 - 15%
Lab reports
Problem solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.Problem Solving
15 - 25%
Lab reports, end-of-chapter homework assignments
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.Skill Demonstrations
0 - 10%
Lab skill technique and accuracy and precision of lab results
Exams: All forms of formal testing, other than skill performance exams.Exams
50 - 80%
Quizzes, mid-term exams, and final exam
Other: Includes any assessment tools that do not logically fit into the above categories.Other Category
0 - 0%
None


Representative Textbooks and Materials:
Untitled document
Chemistry: The Molecular Nature of Matter and Change. 8th ed. Silberberg, Martin and Amateis, Patricia. McGraw-Hill. 2018
Chemistry. 13th ed. Chang, Raymond and Overby, Jason. McGraw-Hil. 2019
General Chemistry. 4th ed. McQuarrie, Donald and Rock, Peter and Gallogly, Ethan. University Science Books. 2010 (classic)
Chemistry: The Science in Context. 5th ed. Gilbert, Thomas and Kirss, Rein and Foster, Natalie. W. W. Norton. 2017
Chemistry: A Molecular Approach. 4th ed. Tro, Nivaldo. Prentice Hall. 2017
 
Lab Manuals
Instructor Prepared Materials
Laboratory Experiments for Chemistry: The Central Science. 14th ed. Brown, Theodore and LeMay, Eugene and Bursten, Bruce. Pearson. 2018
Laboratory Manual for Chemistry: A Molecular Approach. 4th ed. Tro, Nivaldo and Vincent, John and Livingston, Erica. Pearson. 2017

Print PDF