PHYS 41 Course Outline as of Fall 2019

CATALOG INFORMATION

Dept and Nbr: PHYS 41 Title: WAVES, OPTICS, THERMO
Full Title: Waves, Optics and Thermodynamics for Scientists & Engineers
Last Reviewed: 1/28/2019

Catalog Description:
This is a course intended for science and engineering students and will include oscillations, waves, sound, heat, kinetic theory, thermodynamics, geometrical optics, interference, diffraction and polarization of light.

Prerequisites/Corequisites:
Course Completion of PHYS 40 and MATH 1B

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:
Description: This is a course intended for science and engineering students and will include oscillations, waves, sound, heat, kinetic theory, thermodynamics, geometrical optics, interference, diffraction and polarization of light. (Grade Only)
Prerequisites/Corequisites: Course Completion of PHYS 40 and MATH 1B
Recommended:
Limits on Enrollment:
Transfer Credit: CSU;UC.
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:
C Natural Sciences Spring 1983

CSU GE: Transfer Area Effective: Inactive:
B1 Physical Science Spring 1983
B3 Laboratory Activity

IGETC: Transfer Area Effective: Inactive:
5A Physical Sciences Spring 1983
5C Fulfills Lab Requirement

CSU Transfer: Transferable Effective: Spring 1983 Inactive:

UC Transfer: Transferable Effective: Spring 1983 Inactive:

CID:
CID Descriptor: PHYS 200S Calculus-Based Physics for Scientists and Engineers: ABC
SRJC Equivalent Course(s): PHYS40 AND PHYS41 AND PHYS42 AND PHYS43

Certificate/Major Applicable: Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:
Upon completion of the course, students will be able to:
1. Apply laws of physics to analyze and solve problems related to oscillatory motions, wave propagation and interferences including sound, laws of thermodynamics and geometrical/wave optics.
2. Design and assemble apparati to measure physical phenomena.
3. Analyze and make comparisons between experiment and theory.
4. Effectively communicate ideas and processes of physics.

Objectives:
During the course, students will:
1. Describe waves and solve problems relating to their properties and propagation in various media.
2. Be able to convert between temperature scales, solve problems related to coefficient of expansion, thermal equilibrium and heat transfer.
3. Use the laws of thermodynamics and the kinetic theory of gases to solve problems related to ideal gases and various heat engines.
4. Explain propagation of light in media including reflection, refraction and dispersion.
5. Explain image formation and draw the ray diagrams for various optical devices including lenses, mirrors, microscopes and telescopes.
6. Explain the formation of interference patterns of light from a single slit, a double slit, a diffraction grating, and thin films.
7. Describe polarization with filters and by reflection.
Lab Objectives:
1. Develop and conduct experiments that apply the scientific method and error analysis to explore principles in waves, sound, thermodynamics and optics.
2. Use manual and computerized data collection techniques to measure and analyze parameters related to waves, sound, thermodynamics, and optics.
3. Plot, curve fit, and interpret data using a spreadsheet or other analysis tools.

Topics and Scope:

I. Oscillatory Motion
 A. Simple harmonic motion
 B. Wave equations
 C. Damped/forced oscillations

II. Wave Motion - Travelling Wave Model/Equation

III. Sound Waves
 A. Speed, frequency, power level and intensity
 B. Doppler effect

IV. Superposition and Standing Waves
 A. Equations
 B. Interference and standing waves
 C. Beats

V. Temperature and Zeroth Law of Thermodynamics
 A. Temperature scales
 B. Thermal expansion
 C. Ideal gas

VI. First Law of Thermodynamics
 A. Heat and thermal energy
 B. Specific heat and latent heat
 C. Work-heat relationship
 D. Thermal transfer methods

VII. The Kinetic Theory of Gases
 A. Molecular and statistical models
 B. Molar specific heat of gas
 C. Thermal processes
 D. Equipartition theorem

VIII. Second Law of Thermodynamics
 A. Heat engines
 B. Entropy

IX. Light and Optics
 A. Nature of light
 B. Reflection and refraction of light
 C. Total internal reflection

X. Image Formation
 A. Mirrors and lenses
 B. Ray diagrams
 C. Optical instruments including eye, camera, microscope, telescopes

XI. Interference of Light Waves
 A. Single and double slits
 B. Thin film interference
 C. Interferometers

XII. Diffraction
 A. Narrow single slit
B. Double slits
C. Diffraction gratings

All topics are covered in both the lecture and lab parts of the course.

Assignment:

Lecture-Related Assignments:
1. Homework problem sets (10-30)
2. Quizzes (5-15)
3. Mid-term exams (2-4)
4. Final exam
5. Written lab reports (12-16)

Lab-Related Assignments:
1. Laboratory experiments (12-16)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

| Written lab reports | Writing 5 - 10% |

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

| Homework problems, lab experiments | Problem solving 15 - 35% |

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

| None | Skill Demonstrations 0 - 0% |

Exams: All forms of formal testing, other than skill performance exams.

| Objective examinations (multiple choice, etc.) that include essay questions, Quizzes, Mid-terms, Final exam | Exams 50 - 70% |

Other: Includes any assessment tools that do not logically fit into the above categories.

| Class participation | Other Category 0 - 5% |

Representative Textbooks and Materials:
Physics for Scientists and Engineers. 10th ed. Serway, Raymond and Jewett, John. Cengage L. 2019