MATH 15 Course Outline as of Summer 2019

CATALOG INFORMATION

Dept and Nbr: MATH 15 Title: ELEMENTARY STATISTICS Full Title: Elementary Statistics Last Reviewed: 1/9/2024

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	4.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 140.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Exploration of concepts in statistics, descriptive statistics, probability theory, Central Limit Theorem, estimation of population parameters from a sample, hypothesis testing, correlation and linear regression, introduction to analysis of variance, and computer simulations.

Prerequisites/Corequisites:

Completion of MATH 161 OR MATH 156 OR MATH 154 OR MATH 155 or AB705 placement into Math Tier 1 or higher

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Exploration of concepts in statistics, descriptive statistics, probability theory, Central Limit Theorem, estimation of population parameters from a sample, hypothesis testing, correlation and linear regression, introduction to analysis of variance, and computer simulations. (Grade or P/NP) Prerequisites/Corequisites: Completion of MATH 161 OR MATH 156 OR MATH 154 OR MATH 155 or AB705 placement into Math Tier 1 or higher Recommended: Limits on Enrollment: Transfer Credit: CSU:UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication Thinking	n and Analytical	Effective: Fall 1989	Inactive:
CSU GE:	MC Transfer Area B4	Math Competer Math/Quantitat	2	Fall 1981 Effective: Fall 1990	Inactive:
IGETC:	Transfer Area 2A	Mathematical Quantitative Re	1	Effective: Fall 1993	Inactive:
CSU Transfer	Transferable	Effective:	Fall 1989	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1989	Inactive:	
CID:			~		

CID Descriptor:MATH 110	Introduction to Statistics
SRJC Equivalent Course(s):	MATH15 OR PSYC9

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Use numerical and graphical methods to summarize, display, and interpret data sets.
- 2. Estimate population parameters from sample statistics.
- 3. Perform one and two sample hypothesis tests for population means and proportions.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Create and use graphic displays of data and frequency distributions.
- 2. Identify the standard methods of obtaining data and identify advantages and disadvantages of each method.
- 3. Distinguish among different scales of measurement and their implications.
- 4. Define mean, median, mode, percentiles, variability and standard deviation, and compute each for sets of data.
- 5. Use laws of probability.
- 6. Apply concepts of sample space and probability distributions, including calculation of the mean and variance of a discrete distribution, and calculation of probabilities using normal and t distributions.

- 7. Distinguish between sample and population distributions, and apply the Central Limit Theorem to calculate sampling distributions of means, proportions and standard error.
- 8. Compute and interpret confidence intervals and required sample size.
- 9. Identify the basic concept of hypothesis testing including Type I and II errors.
- 10. Select the appropriate technique for testing a hypothesis and interpret the result.
- 11. Perform hypothesis testing for mean, proportion and variance.
- 12. Determine and interpret levels of statistical significance including p-values.
- 13. Implement goodness of fit test, and the test for independence.
- 14. Use linear regression and Analysis of Variance (ANOVA) for estimation and inference, and interpret the associated statistics.
- 15. Use statistical software for evaluation of data and inference.
- 16. Process data sets from disciplines including business, social sciences, psychology, life sciences, health sciences and education.

Topics and Scope:

- I. Statistical Description
 - A. Graphic display of univariate and bivariate data
 - B. Levels of measurement
 - C. Frequency distributions
 - 1. Shapes of distributions
 - 2. Empirical rule
 - D. Measures of central tendency
 - E. Measures of variation
 - F. Measures of relative position
 - G. Correlation
- II. Probability Theory
 - A. Sample space and laws of probability
 - B. Random variables and expected value
 - C. Probability distributions including, but not limited to
 - 1. Binomial
 - 2. Normal
 - 3. Student
 - 4. Chi squared
- III. Statistical Inference
 - A. Sampling methods and experimental design
 - B. Sampling distributions of means and proportions
 - C. Standard error
 - D. Central Limit Theorem
 - E. Estimation and confidence intervals
 - F. Hypothesis testing
 - 1. Tests of proportions and means, including t-tests for one and two populations
 - 2. Chi square tests: goodness of fit and independence
 - 3. P-values, significance, type I and type II errors
 - G. Required sample size
 - H. Correlation and linear regression
 - I. Introduction to ANOVA (analysis of variance)
- IV. Use of Statistical Software
 - A. Analysis and evaluation of data
 - B. Methods of simulations
- V. Use Data Sets from Disciplines, such as:
 - A. Business

- B. Social sciences
- C. Behavioral sciences
- D. Life sciences
- E. Health sciences
- F. Education

Assignment:

- 1. Reading outside of class (0-50 pages per week)
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor (8-16)
- 3. Exams (2-4) and a final exam; quizzes (0-20)
- 4. Projects, e.g. computer activities, surveys or data collection and analysis (0-2)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Problem sets

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

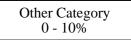
Exams: All forms of formal testing, other than skill performance exams.

Objective exams, quizzes, final

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:


Elementary Statistics: Picturing the World. 6th ed. Larson, Ron and Farber, Betsy. Pearson. 2015 Elementary Statistics. 12th ed. Triola, Mario. Pearson. 2014 (classic) Elementary Statistics, A Step by Step Approach. 9th ed. Bluman, Allan. McGraw-Hill. 2013 (classic)

Writing 0 - 0%

Problem solving 10 - 30%

Skill Demonstrations 0 - 0%

> Exams 70 - 80%

Modern Elementary Statistics. 12th ed. Freund, John and Perles, Benjamin. Pearson. 2007 (classic)