DET 182B Course Outline as of Fall 2018

CATALOG INFORMATION

Dept and Nbr: DET 182B Title: DIESEL FUEL SYSTEMS

Full Title: Diesel Fuel Systems Last Reviewed: 1/22/2018

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.25	17.5	Lecture Scheduled	39.38
Minimum	3.00	Lab Scheduled	2.25	8	Lab Scheduled	39.38
		Contact DHR	0		Contact DHR	0
		Contact Total	4.50		Contact Total	78.75
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 78.75 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: DET 82B

Catalog Description:

An in-depth study of heavy duty diesel engine fuel and electronic control systems. Students perform service, maintenance and diagnosis of diesel engine fuel systems.

Prerequisites/Corequisites:

Course Completion of DET 182A

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100; and DET 179

Limits on Enrollment:

Schedule of Classes Information:

Description: An in-depth study of heavy duty diesel engine fuel and electronic control systems. Students perform service, maintenance and diagnosis of diesel engine fuel systems. (Grade Only)

Prerequisites/Corequisites: Course Completion of DET 182A

Recommended: Eligibility for ENGL 100 or ESL 100; and DET 179

Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Effective: Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Diagnose and repair modern diesel engine fuel systems.
- 2. Diagnose and repair electronically controlled engines.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Carry out diagnostic procedures to deduce necessary repairs and perform tune-up procedures to correct engine performance.
- 2. Identify and evaluate electronic systems components.
- 3. Perform diagnosis and repairs on an electronic control system.
- 4. Identify different types of engine fuel systems.
- 5. Use engine tune-up and diagnostic tools and instruments effectively.
- 6. Discuss and apply personal, shop, and environmental safety procedures.

Topics and Scope:

- I. Diesel Fuel Systems and Components*
 - A. Diesel fuel properties and charactersicts
 - B. Low-pressure fuel systems
 - C. Functions of high-pressure systems
 - D. Hydraulic nozzles
 - E. Governors
 - F. Multiple plunger injection pumps
 - G. Mechanical distributor injection pumps
- II. Electronic Signaling and Sensors*
 - A. Electronic signal processing principles
 - B. Sensors
- III. Electronic Injection Systems and Components*
 - A. Electronic distributor injection pumps

- B. Electronic unit injectors and unit pumps
- C. Cummins unit injection system
- D. Hydraulically acutuated electronic unit injector systems
- E. Common rail fuel systems
- IV. Air Induction and Exhaust Systems*
 - A. Air induction systems
 - B. Fixed geometry and wastegated turbochargers
 - C. Variable geometry and series turbochargers
 - D. Exhaust gas recirculation
 - E. Charge air cooling
 - F. Exhaust aftertreatment systems
 - G. Exhaust systems and engine retarders
 - H. On-Board diagnostics
- V. Hybrid Systems and Alternate Fuels
 - A. Hybrid drive systems and series-type hybrid drives
 - B. Alternative fuels properties and charateristics
 - C. Natural gas combustion systems

Assignment:

Lecture-Related Assignments:

- 1. Read 40 to 60 pages a week
- 2. Ten to fifteen tests to include final

Lab-Related Assignments:

- 1. Perform engine diagnostic tests
- 2. Evaluate engine performance and correct deficiencies
- 3. Complete NATEF (National Automotive Technicians Education Foundation) recommended task sheets
- 4. Daily work logs (work assigned, work completed)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Daily work log

Writing 0 - 25%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Task Sheets

Problem solving 10 - 30%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

^{*}The above sections are covered in both Lecture and Lab.

Engine diagnostics tests and repairs

Exams: All forms of formal testing, other than skill performance exams.

Tests to include final

Other: Includes any assessment tools that do not logically fit into the above categories.

Skill Demonstrations 10 - 30%

Exams 20 - 50%

Other Category 0 - 0%

Representative Textbooks and Materials:

None

Fundamentals of Medium/Heavy Duty Diesel Engines. Wright, Gus. Jones and Bartlett Learning. 2017 Instructor prepared materials