AUTO 190.1 Course Outline as of Fall 2017

CATALOG INFORMATION

Dept and Nbr: AUTO 190.1 Title: ALT FUELS AND SYSTEMS

Full Title: Alternative Fuels and Fuel Systems

Last Reviewed: 3/28/2011

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

This course will provide an introduction to non-traditional fuels and conversion of internal combustion fuel systems to natural gas, bio-fuels, and other alternative fuel systems.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: This course will provide an introduction to non-traditional fuels and conversion of internal combustion fuel systems to natural gas, bio-fuels, and other alternative fuel systems.

(Grade or P/NP)

Prerequisites/Corequisites:
Recommended: Eligibility for ENGL 100 or ESL 100
Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Effective: Inactive: Area **CSU GE: Transfer Area** Effective: Inactive:

IGETC: Transfer Area Inactive: Effective:

CSU Transfer: Effective: Inactive:

UC Transfer: Inactive: Effective:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

- 1. Differentiate between traditional and "alternative" fuel.
- 2. Identify and describe fuels classified as "alternative" to gasoline.
- 3. Explain the origin, manufacture and use of alternative fuels.
- 4. Relate specific alternative fuels to their appropriate application.
- 5. Identify and describe alternative fuel processing and fuel combining technologies.
- 6. Locate and utilize current information on research, invention, and innovation.

Topics and Scope:

- I. Clean fuels: An overview
 - A. Traditional fuels
 - B. Alternative fuels
 - C. Clean air legislation
 - D. Electricity as a fuel
- II. Fuel types, origin, manufacturing and use
 - A. Gaseous fuels
 - 1. LPG (liquefied petroleum gas or propane)
 - 2. CNG (compressed natural gas)
 - 3. LNG (liquefied natural gas)
 - 4. Gasoline as a source of hydrogen
 - 5. Hydrogen fuel compressed from hydrocarbon chain B. Bio-fuels
 - - 1. Methane
 - 2. SVO (straight vegetable oil)
 - 3. Bio-diesel
 - 4. Ethanol
 - 5. Methanol
 - 6. Sun diesel
 - 7. Hydrogen fuel compressed from electrolyzed water

- 8. Water as a fuel
- C. Electric fuels
 - 1. Hydrogen cells
 - 2. Wave generators
 - 3. Solar cells
 - 4. Geothermal
 - 5. Hydrogrid
 - 6. Free standing generators
 - 7. Wind
 - 8. Earth turbine
- III. Fuel Processing Technologies
 - A. Direct injection / compression ignition diesel motors
 - B. Gasoline direct injection
 - C. Jet engine processing technologies
 - D. Electric fuel processing technologies
 - 1. Lithium ion batteries
 - 2. Nano-coating cell technology
 - 3. In-wheel hub electric direct drive
 - 4. Compressed air (France)
- IV. Fuel Combining Technologies
 - A. Hybrid
 - B. Plug-in hybrids
 - C. Hydraulic hybrid
 - D. Regenerative braking
- V. Centers of Research, Invention, and Innovation
 - A. Rocky Mountain Institute
 - B. NBEAA (North Bay Electric Automobile Association)
 - C. CalCars
- D. E-Traction
- E. Landfill Energy Systems
- F. Sonoma County Sustainable Transportation Center (SOCOSTC)
- G. Research programs
- H. National and regional associations and organizations
- I. National, state, and local government programs

Assignment:

Representative assignments:

- 1. Readings (approximately 5-10 pages per week) and discussion of traditional and alternative fuels
- 2. Field trips (1-4 during regularly scheduled class session(s)) to local alternative fuel facilities and/or refining facility
- 3. Field notes
- 4. Group research reports (1-2) on topics such as: existing technology, existing research and development projects, public alternative fuel uses, case studies. 3-5 pages each and oral presentation of findings
- 5. Final project: research and written report (5-7 pages) on a selected alternative fuel technology or related topic. In-class presentation
- 6. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Final project report

Writing 40 - 60%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Group research report

Problem solving 10 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Short answer

Exams 20 - 40%

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance and participation; class presentation; field notes

Other Category 10 - 20%

Representative Textbooks and Materials:

Instructor prepared materials

Alternative Fuels: The Future of Hydrogen, by Michael Hordeski. Fairmont Press, Incorporated, 2008.

Alternative Fuels and Electric Vehicle Technology, by David Lang. Spirit Publications, 2005. ASME Turbo Expo: Biomass and Alternative Fuels, Innovations. American Society of Mechanical Engineers, 2004. (Classic)

Alternative Diesel Fuels. Society of Automotive Engineers, Incorporated, 2004. (Classic)