CATALOG INFORMATION

Dept and Nbr: MATH 5 Title: INTRO TO LINEAR ALGEBRA
Full Title: Introduction to Linear Algebra
Last Reviewed: 2/8/2021

Units		Course Hours per Week	Nbr of Weeks		Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50

Non-contact DHR 0

Total Out of Class Hours: 105.00
Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable
Grading: Grade Only
Repeatability: $\quad 00$ - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Catalog Description:

An introduction to linear algebra including the theory of matrices, determinants, vector spaces, linear transformations, eigenvectors, eigenvalues and applications.

Prerequisites/Corequisites:

Completion of MATH 1B or higher (VF)

Recommended Preparation:

Concurrent enrollment in MATH 1C or MATH 2

Limits on Enrollment:

Schedule of Classes Information:

Description: An introduction to linear algebra including the theory of matrices, determinants, vector spaces, linear transformations, eigenvectors, eigenvalues and applications. (Grade Only)
Prerequisites/Corequisites: Completion of MATH 1B or higher (VF)
Recommended: Concurrent enrollment in MATH 1C or MATH 2
Limits on Enrollment:
Transfer Credit: CSU;UC.
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area	Effective:	Inactive:
CSU GE:	Transfer Area	Effective:	Inactive:
IGETC:	Transfer Area	Effective:	Inactive:

CSU Transfer: Transferable Effective: Spring 1989 Inactive:
UC Transfer: Transferable Effective: Spring 1989 Inactive:

CID:

CID Descriptor:MATH 250 Introduction to Linear Algebra SRJC Equivalent Course(s): MATH5

Certificate/Major Applicable:
Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:
Upon successful completion of the course, students will be able to:

1. Solve systems of linear equations using Gauss-Jordan elimination and Cramer's rule.
2. Define operations on matrices, invertibility, elementary matrices, orthogonal matrices.
3. Apply properties of determinants to matrices.
4. Evaluate determinants using row reduction techniques.
5. Define cofactors and adjoints of determinants to determine the inverse of a matrix.
6. Define properties of vectors, subspace, span, linear independence, bases, inner product spaces, and orthonormal bases.
7. Define and determine dimension rank of solution space of a system of linear equations.
8. Define kernel, range, rank, nullity, matrix representation of
linear transformation, similarity, and change of basis.

Topics and Scope:

I. Matrices
A. Systems of linear equations
B. Gauss-Jordan elimination
C. Operations on matrices
D. Invertibility
E. Elementary matrices
F. Orthogonal matrices
II. Determinants
A. Properties
B. Evaluation by row reduction
C. Cofactors and adjoints
D. Formula for inverse of a matrix
E. Cramer's rule
III. Vector Spaces
A. Defining properties
B. Subspace
C. Span
D. Linear independence
E. Basis
F. Dimension
G. Rank
H. Solution space of a system of linear equations
I. Inner product spaces
J. Orthonormal bases
K. Gram-Schmidt process
IV. Linear Transformations
A. Kernel
B. Range
C. Rank and nullity
D. Matrix representation of linear transformation
E. Similarity
F. Change of basis
V. Eigenvectors and Eigenvalues
A. Characteristic equations
B. Eigenspaces

1. Diagonalization of matrices
2. Orthogonal diagonalization of symmetric matrices
VI. Applications may include:
A. Differential equations
B. Fourier series
C. Quadratic forms
D. Gauss-Seidel method
E. Partial pivoting
F. Eigenvalue approximation
G. Others

Assignment:

1. Reading outside of class ($0-50$ pages per week)
2. Problem set assignments (15-30)
3. Midterm exams (2-5), quizzes ($0-20$) and final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Homework assignments
Skill Demonstrations: All skill-based and physical
demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Free response exams, quizzes
Exams 80-95\%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative Textbooks and Materials:

Elementary Linear Algerbra (9th). Anton, Howard. Wiley: 2005 (classic)
Linear Algebra and Its Applications (3rd). Lay, David C. Addison Wesley: 2003 (classic)

