MATH 5 Course Outline as of Fall 1999

CATALOG INFORMATION

Dept and Nbr: MATH 5 Full Title: Linear Algebra Last Reviewed: 2/8/2021 Title: LINEAR ALGEBRA

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

A complete lower division course in Linear Algebra including the theory of matrices, determinants, vector spaces, linear transformations, eigenvectors, eigenvalues and applications.

Prerequisites/Corequisites: Math 1B.

Recommended Preparation: Concurrent enrollment in Math 2A or 2B.

Limits on Enrollment:

Schedule of Classes Information:

Description: Matrices, determinants, vector spaces, linear transformations, eigenvectors & eigenvalues, applications. (Grade Only) Prerequisites/Corequisites: Math 1B. Recommended: Concurrent enrollment in Math 2A or 2B. Limits on Enrollment: Transfer Credit: CSU;UC. (CAN MATH26) Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area			Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer:	Transferable	Effective:	Spring 1989	Inactive:	
UC Transfer:	Transferable	Effective:	Spring 1989	Inactive:	

CID:

CID Descriptor:MATH 250 Introduc	ction to Linear Algebra
SRJC Equivalent Course(s): MATH5	5

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

- 01 Solve systems of linear equations with Gauss-Jordan elimination.
- 2. Define operations on matrices, inveribility, elementary matrices, orthogonal matrices.
- 3. Apply properties of determinants, evaluation by row reduction.
- 4. Define cofactors and adjoint, formula for inverse of a matrix, Cramer's rule.
- 5. Define properties of vectors, subspace, span, linear independence, basis, dimension, rank, solution space of a system of linear equations, inner product spaces, orthonormal bases.
- 6. Define kernel, range, rank/nullity theorem, matrix representation of linear transformation, similarity, change of basis.

Topics and Scope:

1. Matrices.

Systems of linear equations, Guass-Jordan elimination, operations on matrices, invertibility, elementary matrices, orthogonal matrices.

2. Determinants.

Properties, evaluation by row reduction, cofactors and adjoint, formula for inverse of a matrix, Cramer's rule.

3. Vector Spaces.

Defining properties, subspace, span, linear independence, basis, dimension, rank, solution space of a system of linear equations, inner product spaces, orthonormal bases, Gram-Schmidt process.

- 4. Linear Transformations. Kernel, range, rank/nullity theorem, matrix representation of linear transformation, similarity, change of basis.
- 5. Eigenvectors and Eigenvalues.

Characteristic equations, eigenspaces (diagonalization of matrices, orthogonal diagonalization of symmetric matrices).

6. Applications (time permitting). Differential equations, Fourier series, quadratic forms, Gauss-Seidel method, partial pivoting, eigenvalue approximation, others.

Assignment:

- 1. The student will have daily outside reading, problem set assignments from required text(s), or instructor chosen supplementary materials.
- 2. Instructional methodology may include, but not limited to: lecture, demonstrations, oral recitation, discussion, supervised practice, independent study, outside project or other assignments.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments and skill demonstrations are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, Exams

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Performance exams

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative Textbooks and Materials:

Text(s) required of each student will be selected by the department, a committe of the department, or the responsible instructor from the

Writing 0 - 0%	
Problem solving 25 - 50%	

Exams 5 - 25%

Other Category 0 - 0% books currently available. Choices in the past have included: ELEMENTARY LINEAR ALGEBRA (7th) Howard Anton, Wiley, 1997. ELEMENTARY LINEAR ALGEBRA (3rd) Heath 1996.